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1 Introduction

This paper investigates techniques for reconstructing or estimat-
ing unmeasured circuit variables and parameters in power elec-
tronic circuits. In numerous applications in power electronic sys-
tems, measurements of circuit variables (currents and voltages)
are required for closed-loop control purposes or for diagnostic

purposes, but are expensive or impossible to obtain directly. Ex-
" amples are certain inductor currents, voltages at high impedance
nodes where probes cannot be applied, or circuit variables in
electrically isolated portions of a circuit. The approach taken in
this paper is based on observer theory [1, 2], and so the resulting
algorithms may be implemented in real time. A natural scheme
for implementing an observer is given here. Previous work on pa-
rameter and circuit waveform estimation 3] was based on off-line
computational algorithms.

The paper is organized as follows. Section 2 briefly reviews
observer theory, and introduces an approach for observer design
for switching power circuits. The case considered in Section 2
is applicable only to the situation where circuit parameters are
known. Since this is typically not the case in practice, Section
3 extends the method to the situation where the circuit con-
tains unknown parameters. In particular, Section 3 develops an
adaptive estimation algorithm for estimating unknown circuit pa-
rameters along with unmeasured circuit variables. An up-down
converter is used as a vehicle throughout the paper to illustrate
the results. Appendix A contains a discussion of the case where
nonlinear resistive elements are present in the circuit.

2 Observer Theory - Application in
Power Electronics

Consider the model of an isolated up-down converter of Figure 1
with state-space description
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Figure 1: Model of an Isolated Up-Down Converter

z is the two-component state vector composed of the inductor
current and the capacitor voltage, u takes on the value 0 or the
value 1 depending upon the instantaneous switch position, and y
contains measurements of the transformer primary current and
voltage. Note that all dependence on time ¢ is suppressed in the
notation. In the case where all parammeter values are known, the
first step in constructing a state observer for the system (1) is
to coustruct a system that exactly copies the dynamics of this
system. Such a system would take the form

t=Az+ (Bz+bu+ f (3)
is an estimate of the state vector z. It is
essential that the observer state z asymptotically converges to
the underlying system state z. In order to study this behavior,
one needs to examine the error dynamics that govern the error
e=z—1,le,

where the vector z

é= Ae+ uBe . (4)

Since this dynamics may not in general be guaranteed to be stable
or may not result in optimal estimates, observer theory leads one
to incorporate a prediction error term formed from the difference
between the measurement y of the output in (2) and the predicted
output C(u)z+D(w). The observer is then completed by injecting
a signal proportional to the prediction error into the right-hand
side of (3) yiclding the observer system

i=Az+ (Bz+bu+ f+ EK®)[C(v)z+ D(u)—y] (5)
and the associated error dynamics
é = Ae+uBe + K (t)C(u)e. (6)

A standard result of linear system theory [1, 2] guarantees that
one can find a K (t) that stabilizes this dynamics provided the
system modeled by (1) and (2) is observable.
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Figure 2: Simulation of Open Loop Observer: (a) Actual and Ob-
server Currents, (b) Actual and Observer Voltages, (c) Obscrver
Current Error, and (d) Observer Voltage Error

It turns out that the open loop error dynamics (4) is asymp-
totically stable for the example of Figure 1. Futhermore, there
is a natural Lyapunov function for this error dynamics given by

V(e) = 3¢°Qe &)
where Q = diag{L C} and * indicates the transpose of the as-
sociated vector. This function corresponds to the energy in the
increment between the trajectories of the observer system and
the trajectories of the underlying boost converter. See [4, 5] for
more details on the nature of this Lyapunov function and its use
in exhibiting open loop stability of switching power converters.
Results in [4, 5] guarantee that the energy in the increment is
a Lyapunov function for a power electronic circuit that is built
from linear passive reactive elements, ideal switches, time-varying
sources, and incrementally passive resistive elements. One con-
clusion for such a circuit is that any pair of trajectories corre-
sponding to differing initial conditions cannot diverge. Since the
open loop observer and the underlying converter systemn corre-
spond to identical dynamical systems that may be initialized with
different initial conditions, we obtain

V(e) = %{e‘[QA + A*Qle + e [QB + B*QJe} < 0. (8)

We conclude that the observer error (measured by V(e) ) cannot
increase. A simulation of this open loop observer has been carried
out for the example up-down converter of Figure 1. The results
are shown in Figure 2. Note that the convergence of the error
can be slow, and is actually controlled by the open loop circuit
dynamics.
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Figure 3: Observer Iinplementation Schetne

It is possible to improve upon the open loop observer by
incorporating a prediction error gain of the form K(u) =
—Q~'C*(u)R(v) where R(u) is a positive semi-definite matrix
for v = 0,1. This gain results in the error dynamics

é = Ae+ uBe — Q7'C*(u)R(u)C(u)e. 9)
Differentiating the Lyapunov function (7) along this error dy-
namics yields

Vie) = %{e'[QA + A*Qle + ue*[QB + B*Qle +

—2e*C*(u)R(u)C(u)e} <0. (10)
In practice, we could select R(x) to yield relatively fast aver-
aged error dynamics controlled by the eigenvalues of A + d,B —
Q'C*RC where d,, is the nominal (constant) duty ratio and
C*RC is the averaged value of the matrix C*(u)R(u)C(u). Other
criteria for the selection of R could he based on minimization of
steady state errors due to parameter uncertainty or due to noise
entering the system dynamics and the measurement equations
[6]. Note that the observer with this form of prediction error
gain can be implemented in a natural way as illustrated in Fig-
ure 3 for the example up-down converter. The circuit corresponds
to a copy of the up-down converter with the prediction error in-
jection implemented by a single resistor. For simplicity in this
example, we have only used the measurement of primary trans-
former voltage which corresponds to a singular matrix R. Note
that all impedances could be scaled so that the observer has re-
duced currents, compared to those of the underlying circuit. A
simulation of waveforms obtained with this observer is shown in
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Figure 4. Note that the errors converge more rapidly towards
zero.
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Figure 4: Simulation of Observer Using Prediction Error: (a)
Actual and Observer Currents, (b) Actual and Observer Voltages,
() Observer Current Error, and (d) Observer Voltage Error

It turns out that the approach taken in this section for con-
structing observers can be extended to the case where noulinear
resistive elements are present in the converter circuit. The only
requirement is that these resistive elements be incrementally pas-
sive. A nontrivial example of a power electronic circuit with a
such nonlinear resistive element is a DC-DC converter operating
in the discontinuous conduction mode. Appendix A gives details
on this case.

3 Unknown Circuit Parameters

The development in the previous section assumed that all circuit
parameters were known a priori. To study the effects of unknown
parameter values, the observer was simulated when the load re-
sistance was perturbed by 5%. The results are shown in Figure
5. One of the most notable features of this simulation is that
there is a steady state bias in the state estimates produced by
the observer.

A natural approach for dealing with this problem is to con-
struct an adaptive observer that estimates the unknown circuit
parameters along with the circuit state variables. In the sequel,
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Figure 5: Observer Waveforms with Parameter Uncertainty: (a)
Observer Current Error and () Observer Voltage Error

we shall assume that the switch variable u is known for all time,
and that the portion of the measurement equation (2) that in-
volves the state is exact. That is, the matrix C(u) is known.
However, we shall relax the assumption that the circuit param-
eters appearing in the state-space model (1) (and in D(u)) are
known. For the purposes here, define

Av) = A+uB (1)

u) = bu+f (12)
so that the model (1) can be rewritten in the form

&= A(u)x + b(u). (13)

Since the parameters of this model are not precisely known, a
first step in constructing an observer would be to use the best
known estimates of the unknown parameters. The observer sys-
tem corresponding to (5) could then take the form

2= Au)z + b) (14)

where A(u) and b() are the available estimates of A(u) and b(w),
respectively. We could introduce an error injection term to speed
up convergence, but this is not done to keep the presentation
simple. (Note that the measurements will be used to update
estimates for the parameters in the system model.) The observer
error e = z — ¥ is now governed by

é= A(u)e + §A(u)z + 8b(u) (15)

where 6A(u) = A(u) — A(u) and 8b(u) b(u) — b(u). It is
generally possible to parameterize the circuit in a manner such
that

A(u)x + b(u) = W(x,uv)f (16)
where 11" (x, u) is a known matrix (depending on « and u) and all
the unknown parameter information is contained in the vector
6. The important feature of this choice is that it is a linear
parameterization. With this parameterization, the error equation
(15) becomes

é= A(u)e + W(z,u)o0 17
where 60 = @ — @ is the vector of parameter errors. The solution
of (15) is given by

e(f):{)(t,fu)e(tu)—{—/" B(t, )W (=(r),u(r))80dr . (18)
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where ®(1,1g) is the state transition matrix corresponding to the
system matrix A(u). The corresponding error in the output éy =

C(u)(z — z) + 6D(u) satisfies

Sy = C(u)[®( to)elto) + /t:tI’(t,r)W(z(r),u(‘r))60rlr]+
6D(u). (19)

The vector D(u) can also be expressed in the form W;(u)6, where
Wy (u) is known. One then finds

Sy = C(u)®(t, to)e(to) + H(t)58 (20)

where H(t) = C(u) f;, ®(t,7)W(2(7),u(r) )dr + W;(u), provided
66 is constant.

c0 0002 0004 0006 0008 001 0012 0014 0016 0018 002

Time (in seconds)

stimating 2 Parameters

-0'10 0002 0004 0006 0008 001 0012 0014 0016 0.018 002

Time (in seconds)

_0'030 0.002 0004 0006 0008 001 0012 0014 0016 0018 002
time
Estimatin ing 2 parameters
2 400 J
W 200
E o
0 0.002 0004 0006 0008 001 0012 0014 0016 0018 002
time

Figure 6: Adaptive Observer Waveforms: (a) Error in Current
Estimate, (b) Error in Voltage Estimate, (c) Error in Estimate
of E4, and (d) Error in Estimate of Ry

Noting that the term ®(¢,to)e(ty) asymptotically decays to
zero, we are led to attempt a parameter update law based on
the gradient algorithm [7]. Such an algorithm takes the form

2y

6=—gH"8y
where ¢ is a gain parameter. In practice, the system matrix
A(w) is unknown, so we instead use the available estimate of this
matrix A(u) to construct an estimate H(t) of H(t) via

where &(#,7) is the transition matrix that corresponds to the
system matrix A( ©). Note that H(#) converges to H(t) if the un-
known system parameters converge to their actual values. The
error in the parameter vector is then governed by the approxi-
mate dynamics

%&0 ~ —g H(t) H(t) 60 (23)
for slowly varying 66. For this analysis to hold, the gain g needs
to be selected so that the parameter update dynaniics (23) evolve
much more slowly than the observer error dynamics.

The convergence of the parameter error system can be studied
via averaging analysis {7]. In particular, for a sufficiently small
gain g, the error dynamics are known to be exponentially stable
if the averaged error dynamics are exponentially stable. One
can therefore consider the stability properties of the averaged
dynamics

%59 ~ —g H(tyH(t) 60 (24)
to assess the stability of the parameter error system. The conver-
gence of the averaged parameter error dynamics can be studied
with a Lyapunov function of the form V(86) = (1/2)(66)*(68).
Differentiating along the averaged parameter error system tra-
jectories, we obtain

V/(86) = —g (60) HEFH() (66) — g (86) SHO-H() (66) (25)

where §H(t) = H(t) — H(t). The right-hand side of this expres-
sion is nonpositive as long as the matrix norm of § H(t)* H(t) does
not exceed the smallest eigenvalue of H(t)*H(t). This is a rather
conservative condition for stability, but the important point is
that there is somme neighborhood of convergence. One interesting
point is that it is possible to estimate H(t)*H(t) off-line using a
nominal steady state trajectory to assess the feasibility of esti-
mating certain parameters given certain measurements. Typical
analyses show that it is always feasible to estimate a single pa-
rameter, and sometimes feasible to estimate pairs of parameters.

Here, we illustrate the algorithm on our example up-down con-
verter. For purposes of illustration, we assumne that all param-
eters, except the load resistance and the diode forward voltage
drop, are known, and hence the adaptive observer is designed to
estimate these parameters along with the circuit state variables.
The results of a simulation are shown in Figure 6. This simula-
tion used initial parameter values (load resistance and forward
diode drop) that had five percent errors. Note that in this exam-
ple, the estimator would allow one to avoid all measurements of
secondary side circuit variables.

4 Conclusion

This paper has explored techniques for estimating power elec-
tronic circuit waveforms and parameters using only a limited set
of measurements. The observer scheme outlined in Section 2
admits a simple circuit implementation. We aim to develop a
similar implementation scheme for the adaptive estimator intro-
duced in Section 3. With this approach, one will be able to avoid
difficult or expensive circuit measurements
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A The Case of Nonlinear Resistive
Elements

In the case where nonlinear resistive elements are present in a
power circuit, the state-space model can be recast as

Qz
y

—(1 — u)Ho(x) — uH;(x)
C(u)z + D(u)

Il

where 7 is the vector of inductor currents and capacitor voltages,
Q is the matrix of inductances and capacitances, and H;(e) are
hybrid representations for the non-reactive portion of the circuit
that correspond to each of the switch configurations. A conse-
quence of the incremental passivity of the resistive elements is
that the hybrid representations are also incrementally passive,
ie.

(z = z)*[Hi(z) - Hi(x)] =2 0 (28)
for any z and z and for i = 0,1. An observer for the system
modeled by (26,27) can then take the form:

Q: = —(1 — w)Ho(2z) — uHa(z) + K(u)[C(u)z + D(u) — y]. (29)

A choice of K(u) = C(u)*R(u) with R{w) positive semi-dcfinite
will then result in stable error dynamics, obtained by subtracting
(26) from (29). This can be demonstrated by differentiating the
the energy in the increment V = 1(x — 2)*Q(x — z) along tra-
jectories of the error system. Carrying out this procedure, one
finds

v

—(1 —u)(z - 2)"[Ho(2) — Ho(x)]
—u(z — )" [Hu(2) = Ha(w)}
—(z — )"C(u)"R(u)C (1)(z — ). (30)

The first two terms on the right-hand side of (30) are nonpositive
as a result of the incremental passivity of the resistive elements
in the circuit, while the third term is nonpositive by design. The
conclusion is that the error dynamics are stable. Asymptotic
stability can typically be obtained in practice. A nontrivial ex-
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Figure 7: Up-Down Converter Model for Discontinuous Conduc-
tion Mode
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ample of a circuit containing such a nonlinear resistive element
is a converter operating in discontinuous conduction mode. Fig-
ure 7 shows a model of an up-down converter containing an ideal
single-pole double-throw switch and an ideal diode that prevents
the inductor current from reversing. In the discontinuous conduc-
tion mode, the diode can be viewed as a noulinear incrementally
passive resistive element. As such, it is possible to construct an
observer for this circuit using the framework of this paper.

References

[1] C.A. Desocr. Course Notes for Linear Systems (2214). UC
Berkeley, 1989.

[2] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[3] M.P. Kudisch, G.C. Verghese, and J.H. Lang. Off-line paramn-
eter and state estimation for power electronic circuits. PESC
Record, pages 509-516, 1988.

[4] S-R. Sanders. Nonlinear Control of Switching Power Con-
verters. PhD thesis, MIT Dept. EECS, January 1989.

[5] S.R. Sanders and G.C. Verghese. Lyapunov-based control for
switched power converters. PESC Record, 1990.

[6] A.Gelb (Ed.). Applied Optimal Estimation. MIT Press, 1974.

[7] S. Sastry and M. Bodson. Adaptive Control: Stability, Con-
vergence, and Robustness. Prentice-Hall, 1989.

61

TT T Ml



