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On Limit Cycles and the Describing
Function Method in Periodically
Switched Circuits

Seth R. Sanders

Abstract—This paper begins with an examination of existence,
uniqueness, and stability of limit cycles in periodically switched
circuits. The motivation comes from the field of power electron-
ics where switched circuit models composed of passive elements,
independent sources, and ideal switches are studied. The paper
then studies the describing function method for computation of
limit cycles in these switched circuits. Typical power circuit
models have nonlinear elements with characteristics that do not
satisfy a Lipschitz continuity condition. As a result of these
nonsmooth characteristics, previously developed justifications
for the describing function method are not applicable. The
present paper develops a justification for the describing function
method that relies on the incrementally passive characteristics
of the network elements comprising typical power electronic
circuit models. This justification holds for nonsmooth circuit
nonlinearities, and takes the form of a set of asymptotically
convergent bounds on the errors incurred with the describing
function method. In particular, the developed bounds become
arbitrarily tight as the number of harmonics included in the
analysis increases.

I. INTRODUCTION

HIS PAPER begins with an examination of exis-
tence, uniqueness, and stability of limit cycles in
periodically switched circuits. The motivation for this in-
vestigation comes from the field of power electronics
where switched circuit models composed of passive ele-
ments, independent sources, and switches are studied.
The results reported on properties of limit cycles in these
switched circuits are related to analogous properties of
equilibrium points in nonswitched circuits. Note that
nonunique limit cycle and/or chaotic behavior may be
undesirable in power electronic circuits, and these phe-
nomena have attracted some attention recently [1]-[3].
The paper then addresses computational methods for
approximating limit cycles. In particular, the paper studies
the describing function method for analysis of limit cycles
in periodically switched circuits. Typical power circuit
models have nonlinear elements with characteristics that
do not satisfy a Lipschitz continuity condition. As a result,
classical averaging theory [4]-[6] is not generally applica-
ble to these switched systems. Furthermore, the elegant
justification for the describing function method given by

Manuscript received December 9, 1992; revised April 26, 1993. This
paper was recommended by Associate Editor J. Choma, Jr.

The author is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720.

IEEE Log Number 9210967.

Bergen and Franks [7] is not applicable. The results
developed in the above-mentioned references are based
on Lipschitz conditions on system nonlinearities. In con-
trast, the present paper develops a justification for the
describing function method that relies on the incremen-
tally passive characteristics of the network element com-
prising typical power electronic circuits. No smoothness
conditions are needed. The developed justification for the
describing function method takes the form of a set of
asymptotically convergent bounds on the errors incurred
with the method. In particular, the developed bounds
become arbitrarily tight as the number of harmonics in-
cluded in the analysis increases.

There is a large and growing body of literature on
averaging, describing function, and related analysis tech-
niques for power electronic circuits. See, for example
[8]-{14] and also [15]-[19] for results on synthesis of
averaged circuits that are realizations of the averaged
state-space equations. The results reported here offer a
partial justification for the generalized averaging method
developed in [11].

II. EX1STENCE, UNIQUENESS, AND STABILITY OF LIMIT
CyCLES

The results in this section can be considered as analogs
of results for time-invariant resistive networks composed
of strictly incrementally passive elements and independent
sources, and as analogs of results for time-invariant dy-
namical circuits composed of strictly incrementally passive
resistors, independent sources, and locally passive reactive
elements. An incrementally passive multiport resistor has a
characteristic that satisfies (' — v")*(i' — ") > 0 for any
two points (¢’,i') and (v”,i") on its characteristic with *
indicating the transpose of an associated vector. The
resistor is strictly incrementally passive if the inequality is
strict for any pair of distinct points. A locally passive
multiport capacitor is defined by a charge-voltage rela-
tionship that satisfies (¢’ — ¢")*(v' — v”) > 0 for any two
points (¢',v') and (¢",v") on its characteristic. The capac-
itor is strictly locally passive if the inequality is strict for
any two distinct points on the characteristic. An analogous
definition applies for a multiport inductor. Note that the
dc circuit corresponding to a time-invariant dynamical
circuit is defined as the circuit obtained by replacing all
inductor branches by short circuits and all capacitor
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branches by open circuits. See [20] for more details on
these definitions.
For nonswitched circuits, it is known [20]~[22] that:

1. Any resistive circuit constructed from strictly incre-
mentally passive resistive elements and independent
sources possesses a unique operating point if each
cutset contains at least one current-controlled resis-
tor and each loop contains at least one voltage-con-
trolled resistor.

2. Any time-invariant dynamical circuit has a unique
equilibrium point if its dc circuit has a unique oper-
ating point.

3. Any time-invariant dynamical circuit constructed
from strictly incrementally passive resistive elements,
independent sources, and locally passive reactive ele-
ments has a globally asymptotically stable equilib-
rium if there are neither capacitor-inductor-voltage
source loops nor capacitor-inductor-current source
cutsets.

This section contains two main results on limit cycle
existence for periodically switched circuits that generalize
the results quoted above for nonswitched circuits. The
first pertains to circuits containing only linear reactive
elements, and applies for arbitrarily large periods. The
second considers the case where nonlinear reactive ele-
ments are present in the circuit, but the result is valid
only for sufficiently small periods (i.e., fast switching oper-
ation).

For the purposes here, we are interested in switched
circuits that possess global normal form state equations of
the form

(1 —uy = —u,)Hylg(g)]

—uHlg()] = - —u,H,lg()], (D
where g is the vector of inductor fluxes and capacitor
charges, g(-) is the function that maps the inductor fluxes
and capacitor charges to the inductor currents and the
capacitor voltages, respectively, and the H,(-) (k =
0,1,...,m) are hybrid representations for the resistive
portion of the circuit corresponding to each possible con-
trolled switch configuration. The H,(-) need not be
smooth, and indeed, nonsmooth elements such as ideal
diodes may be among the resistive elements in a circuit
model. Our circuit is supposed to have m + 1 distinct
controlled switch configurations, and the following corre-
spondence between the variables u, and the hybrid func-
tions H,(-):

E:

Hyou = - =u,=0,
H ou =1, Uy, = - =u, =0,
H,ou = =u, =0, u,=1. ()

2.1. Linear Reactive Elements

A first result concerns the existence, uniqueness, and
stability of limit cycles in periodically switched circuits
built from dc sources, strictly incrementally passive resis-
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tors, ideal switches, and /inear passive reactive elements.
The linear reactive elements are assumed to be modelled
by (say for a capacitor)
d .
—q =1,
dt
r=Clg, 3)
where C is a positive definite and symmetric matrix. The
inductive elements are modelled in an analogous way. For
this class of circuits, we have the following:

Theorem 2.1: Suppose that during each cycle of opera-
tion of period 7, there are never inductor-current source
cutsets nor capacitor-voltage source loops. Furthermore,
suppose that during each cycle, there is some nonzero
interval of time during which each inductor branch is in a
cutset with only strictly incrementally passive resistive
elements and that there is some nonzero interval of time
during which each capacitor branch is in a loop with only
strictly incrementally passive resistive elements. Then the
periodically switched circuit possesses a unique limit cycle
that is globally asymptotically stable.

Outline of Proof- First, a consequence of the exclusion
of inductor-current source cutsets and of capacitor-volt-
age source loops is that the state equation (1) exists
globally. The existence, uniqueness, and stability of a limit
cycle follow by taking the energy in the increment,

V(8i,60) = Y (1/2)(8i, ) L,(8i,) -
Ind.
+ Y (A/2(80)C (8, (4)

Cap.

as an incremental Lyapunov function [23], [24]. Here,
8i =i —i"and 8v = ' — ¢ are the increments between
any two solution trajectories (¢', ") and (", v"), generated
from different initial conditions. Because of the second
part of the hypothesis, the energy in the increment sampled
periodically (with period T) is strictly decreasing when-
ever it is not identically zero. In terms of a norm defined
by (4), the Poincaré map obtained by periodically sam-
pling (with period T') the capacitor voltages and inductor
currents is a contraction mapping, proving the theorem.
]
Example: dc—dc Conuerter in Discontinuous Conduction
Mode. A nontrivial application for the above result occurs
in dc—dc converters operating in the discontinuous con-
duction mode. In particular, consider the model for an
up-down converter shown in Fig. 1. Note that for the
continuous conduction mode, we could omit the ideal
diode from the circuit model since the inductor current
remains strictly positive for all time. However, it is this
diode that forces the circuit into discontinuous conduction
when the load is light. Since the diode is an incrementally
passive resistive element, the circuit satisfies the condi-
tions for the theorem above and hence is guaranteed to

exhibit a unique, stable limit cycle.

2.2. Nonlinear Reactive Elements

In the case where nonlinear reactive elements are pre-
sent in the switched circuit, we shall require that such
elements be strictly locally passive. In this case, a similar
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Fig. 1. Model for up-down converter in discontinuous conduction mode.
theorem holds, but only for sufficiently small periods 7. It
is also necessary that the right-hand side of the system
equation (1) satisfy a Lipschitz condition in g and be
twice differentiable with respect to g. In this case, we
have the following:

Theorem 2.2: Suppose that the topological hypotheses
of Theorem 2.1 hold, but nonlinear locally passive reactive
elements are present in the switched circuit. Suppose also
that the corresponding normal form equation (1) satisfies
a Lipschitz condition in the state g and its right-hand side
is twice differentiable with respect to g. Then, there exists
some T, > 0 such that for all periods T € (0, T,], the
periodically switched circuit possesses a unique, asymptot-
ically stable limit cycle.

Outline of Proof: This theorem is proved by first noting
that the corresponding averaged system possesses a
unique, asymptotically stable equilibrium point. Then, on
an interval of length T, the solution map for the switched
system can be approximated to within O(T?) by the
solution map for the averaged system. Because the solu-
tion map for the periodically switched system can be
obtained by continuously deforming the solution map for
the averaged system, we conclude that for small enough T
the two maps share the same local behavior. More details
can be found in the literature on averaging theory. See,
for example, [6]. O

The above results specify conditions for existence,
uniqueness, and stability of limit cycles in switched cir-
cuits. The following sections analyze the describing func-
tion method for approximating a limit cycle when it is
known that a circuit possesses a limit cycle.

II1. THE DESCRIBING FUNCTION METHOD

Consider the partition of a power electronic circuit into
the interconnection of a reactive n-port and a resistive
n-port. Suppose all reactive elements are linear and pas-
sive. In this case, the circuit can be modelled with the
block diagram shown in Fig. 2. The block labelled (Qs)™!

(@)

H{e,u(t))

Fig. 2. Block diagrams for partitioned circuit.

is a hybrid model for the linear reactive n-port, while the
block labelled H(-, u(?)) is a hybrid model for the nonlin-
ear switched resistive n-port. The matrix Q, which need
not be diagonal, contains the inductance and capacitance
values. The describing function method is based on a
Fourier series representation for the state vector of the
form

x(t) = Y {x)e*e, )
k

where @ = 2m/T corresponds to the fundamental fre-
quency of excitation. The Fourier coefficients are deter-
mined by

1 7 A
(xdk = 5:](; x(t)e kot dt, 6)
In the Fourier domain, a limit cycle is determined by the
infinite set of equations that describe harmonic balance:

0 = —jkwQ{x)r +{H(x,us @)

for all integers k. The quantity { H(x, 1)), can sometimes
be evaluated by consulting a table of describing functions
[25]. The essence of the describing function method lies in
approximating a limit cycle by truncating the infinite set
of equations (7) so that only the relatively large harmonic
coefficients are maintained in the calculation. The next
section develops a justification for this method in the
context of power electronic circuits. In particular, explicit
error bounds are computed.

IV. JusTiFiICATION OF THE DESCRIBING FUNCTION
METHOD

Suppose that in carrying out the describing function
analysis, one includes terms corresponding to a certain
finite subset S of the infinite set of harmonic coefficients.
One would then obtain the approximation

i) = Y (xypekes

kes

®

for x(#). The question addressed here is how well %(z)
approximates x(¢), or more appropriately how well %(¢)
approximates Px(¢), where the operator P is defined by

Px(t) = Y (x)pe*er, )

keS

Note that P(-) projects a periodic waveform onto the
harmonic components determined by k£ € S. The remain-
der of this development is aimed at determining bounds
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on #(t) — Px(¢t) and on Px(¢), where P(-) = I — P(-). The
approach for this follows the method of Bergen and
Franks [7] and Mees [26], [27], where a system is split into
two subsystems: one that governs the behavior of the
fundamental coefficients used to construct Px(z), and one
that governs the behavior of the parasitic coefficients
which result in the waveform Px(¢).

Consider a circuit built from ideal sources, incremen-
tally passive resistive elements, ideal switches, and linear
passive reactive elements. Partition the circuit as shown in
Fig. 2, where the reactive elements are extracted from the
circuit. Associated with each reactive element is some
intrinsic damping. This damping, which is typically a result
of the physical nature of the element, guarantees that the
linear reactive block has finite gain. No assumption of
finite incremental gain is needed for the nonlinear block.
Given the partition described here, the system is modelled
as the feedback interconnection of a block with transfer
function G(s) = [Q(s + a)]”! and a memoryless nonlin-
earity described by H(-,u(t)) which corresponds to the
hybrid description of the multiport network obtained after
extracting the damped reactive elements. This hybrid
model is guaranteed to exist if the circuit has a well
defined state-space model. Note that the linear reactive
subnetwork has finite gain and is incrementally passive,
while the nonlinear subnetwork is incrementally passive
since it results from the interconnection of incrementally
passive circuit elements. See [20] and [28] for a more
detailed discussion of passivity properties of nonlinear
circuits.

The system waveforms can be split into fundamental
and parasitic components. The modified block diagram of
Fig. 3 models the behavior of the parasitic components of
the system waveforms Px(r) with the viewpoint that the
fundamental components are parameters. The purpose of
this description is to study the dependence of the parasitic
components on the fundamental components. It can easily
be seen that the operator P[Q(jkw + a)]”' in the dia-
gram is incrementally passive and has finite gain since the
corresponding element in Figure 2 has these properties.
Furthermore, the gain of this element is reduced as more
coefficients are included in the fundamental set because
of the low pass nature of [Q(s + a)]~'. Suppose the gain
(induced norm) of this element is y. (Here, {x, y) =
(1/T)fyx*()y(t) dt_with * indicating the conjugate
transpose, || x|l = v{x, x} , and induced norms are defined
with respect to the norm ||-]l) It is also true that the
operator H, is incrementally passive as a result of the
property of the analogous operator of Fig. 2. Suppose that
H, satisfies the additional condition

{Hyx = H,x',x —x'} 2 el Hyx — Hyx'|I>  (10)
with real € > 0. The condition (10) is equivalent to a strict
incremental passivity condition on H !, if this inverse
exists. This condition is not very restrictive, as exhibited
by the examples in Section 5. Given these conditions, we
can apply a version of the incremental passivity theorem
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—PH(Pz,u(t)) Pz
PlQUkw + a)] !

—

H,

HyPz) = P[H(Pz + Pz,u) - H(Pz,u)]

Fig. 3. Block diagram for behavior of parasitic components with funda-
mental components as parameters.

[28]. This theorem is reproduced with proof in the Ap-
pendix. We obtain

1Bl < y(2 + %)II PH(Pr, u(e). an

This gives an explicit bound on the magnitude of the
parasitic terms in x(¢) in terms of the harmonics gener-
ated by the nonlinearity H(-, u(¢)) operating on the funda-
mental components. Note that the bound is obtained
through passivity properties, whereas previous work (such
as that in [7]) developed similar bounds through a small
gain argument. In our problem, the small gain theorem
cannot be applied since nonlinear elements that are not
Lipschitz continuous may be present.

Next consider the two block diagrams of Fig. 4. Another
application of the passivity theorem allows us to generate
a bound on the error in the fundamental terms incurred
by ignoring the parasitic terms. In this case, the theorem
is applied to generate a bound on the difference between
the signals Px and PX in the two block diagrams. We
obtain

Yo

— I Pxll, (12)
€

lPx — Pl <
where vy, is the gain of the operator P[Q(jkw + a)]™'.
Note that if Px comprises the exact parasitic terms, then
Px — Px is precisely the error incurred in the fundamental

terms by using the describing function model.
By combinding (11) and (12), we obtain

| Px — Pl < %(2 + %)H PH(Px,u(e)l.  (13)

This is a bound on the error in the fundamental compo-
nents incurred by using the describing function model, in
terms of the harmonics generated by the actual terms.
One can argue from this calculation that the approxima-
tion error in (13) decreases as more harmonic components
are included in the describing function analysis, that is, as
more harmonic components are viewed as fundamental
components. The reasons for this are (i) the gain y of the
linear block applied to the parasitic harmonics decreases
as the number of fundamental harmonics increases, and
(ii) the complementary projection operator P projects
onto lower dimensional subspaces as the number of fun-
damental harmonics increases.
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Fig. 4. (a) Block diagram for “describing function model” that ignores
parasitic terms, and (b) Block diagram for fundamental components with
parasitic terms as perturbation.

The bounds (11) and (13) can be presented in a poten-
tially more convenient form provided the absolute gain of
H(-,u(?)) is bounded, i.e., provided

IHCe, ue) I < k\llxll + &, (14)
and, hence,
WPH(Pe, u( ) < k,IIPx] + &, (15)

for some nonnegative real constants k;, and k,. This
condition does not require that H(-,u(r)) have finite
incremental gain. Then, one obtains

WPH(Px, u(e) < Kk, lIPx — Pell + kI PEIl + k, (16)

by the triangle inequality. Combining this relationship
with (13), one finds

- YoY " -

1P — Pill < 2 2+ ) (kollpe = eI+ kL2 + ).

an

Then, if the quantity 6 = (y,y/eX2 + y/e)k, is less than
1, one finally obtains

I1Px — Pl < ——(1pel + 2 (18)
- PRl < +—=.

s TTS k,

Note that the quantity § can always be made less than 1
by including a sufficient number of harmonic components
in the fundamental set because of the low pass nature of
the linear reactive subnetwork. By combining (11), (16),
and (18), one can write

_ Yy 1 .
1P < (2 + L) ——kipel + k). (9

The results (18) and (19) are quite convenient since these
results give bounds on the error incurred with the describ-
ing function method in terms of quantities computed with
the describing function method. Note that all bounds
developed here are asymptotically convergent since these
bounds become arbitrarily tight as the number of harmon-
ics included in the describing function analysis increases.
See the examples below for details on the application.

V. EXAMPLES

5.1. Series Resonant Converter

To illustrate the application of the theory developed in
the previous section, we first consider the simplified model

L rp+ry,  C Z#

Co

vo () ML T Enw

Fig. 5. Model for a series resonant converter.

of the series resonant converter of Fig. 5. In practice, the
square-wave drive is developed with a half-bridge or full-
bridge circuit. This circuit is usually operated with the
switching frequency (frequency of the driving square wave)
just above or just below the resonant frequency of the
L-C network. Here, let us consider the case where the
circuit is operated above resonance, which permits zero-
voltage switching operation for the power switches and
diodes [29].

The first step is to partition the circuit into a linear
reactive two-port and a nonlinear, time-varying resistive
two-port as shown in Fig. 6. The linear reactive two-port
network consists of the damped L-C network and the
damped output filter capacitor. Note that we have divided
the series resistance r, +r; into a damping term r,
associated with the resonant tank and a term r} associ-
ated with the nonlinear resistive network. A similar step
has been taken with the output load resistor. We have
also lumped the resonant L-R-C network into a single
port, rather than complicate the analysis by including a
port for each of the reactive elements. With the indicated
partition, the linear reactive network is described by

sCR, :
—i1y/R, B S2LC + 51, C + 1
v2/ YR, 0 _r&
sCyrg + 1

v/ YR,

—iyR,
where /R, and /R, are scaling factors that may be
picked to facilitate the analysis. The scaling factors are

needed to give meaning to the various constants that are
to be calculated. We obtain immediately that

Yo < max (R, /r;,ry,/R;). (2D

(20)

The nonlinear resistive network is described by

v, /YRy r, /R, VR,/R, sgn(i))
iz\/R_z 'VRz/RI sgn (i,) R, /g

. iR, V() /R,
Uz/\/"Tz 0

, (22)
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Nonlinear, Time-Varying Resistive 2-Port

Fig. 6. Partition of series resonant converter.

where sgn (-) is the sign function, defined by

sgn(x)={_1’ x20, (23)

1, x<0.

It turns out that for this particular nonlinear hybrid
model, it is possible to compute its inverse and conse-
quently to obtain the constant e. Recall that € is a
measure of the incremental lossyness of the nonlinear
resistive network. In particular, we compute

min (R, /r;, r; /R;)
€= .
(R,/R) + 1 /rp)

(24)

Note that it is possible to pick R;, R,, and the ratios
r,/ry and ry/ry to make the resulting bounds as tight as
possible. For the purposes here, we shall make rather
arbitrary choices for these parameters to simplify the
calculations. We take

R,=r), (25
R =1}, (26)
¥y =rg, @n
r=r.. (28)

We immediately obtain y, = 1. In a realistic design that
attains a reasonable level of power efficiency, it must be
true that ry > r,. Let us assume ry, = 9r, which then
yields € = 0.1. The gain parameter y depends upon how
many harmonic coefficients are included as fundamental
components in the describing function analysis. If we
include the DC and first harmonic terms, we obtain the
estimate y = 0.01. The rationale for this estimate is that
at the frequency of the second harmonic (w = 2/ VLC),
the admittance of the L-R-C network is controlled ap-
proximately by a one-pole roll-off and the impedance of
the R-C network is also controlled by a one-pole roll-off.
For the L-R-C network, we estimate the scaled admit-
tance as 3(r,/y/L/C). If the quality factor Q of this
resonant network is on the order of 50 (which is reason-
able), we find the scaled admittance of this element to be
approximately 0.01. For the R-C network at the output,
the scaled impedance will have a magnitude of approxi-
mately 0.01 at the second harmonic frequency if the time
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constant r,C, is 50 times VLC . This corresponds to a
reasonable design with respect to output ripple voltage.

With this information, we are in a position to calculate
various bounds. The bound corresponding to (11) takes
the form

1 Pxll < 0.02011 PH(Px, u(e ). (29)

Noting that it is possible to calculate the bound
| PH(Px, ()l < 2.31||Pxl| + 0.434|V(t)/ /R, |l on har-
monics generated by this particular circuit nonlinearity,
we obtain the bound

VAt)
VR, ||

This is an explicit bound on the parasitic harmonic terms
in terms of the actual fundamental harmonics. Such a
tight bound is indicative that the describing function
method is useful for this problem. Next, the bound corre-
sponding to (13) takes the form

| Pxll < 0.046]| Px|| + 0.0086 (30)

lPx — Pl < 0.201 PH(Px, u(e ). (31)

Again, combining with [|[PH(Px, u(t))ll < 2.31||Px| +
0.434|V{(t)/ /R, |, the bound

V(1)
|IPx — Pxll < 0.46]| Px|| + 0.086}‘/—]2_—
1
is obtained. This is an explicit bound on the error in the
fundamental terms computed with the describing function
method. This bound is computed with respect to the
fundamental harmonics of the actual circuit waveforms.
It is also possible to invoke the triangle inequality
IIPx|| < ||Px|| + ||Px — Px|| to obtain bounds on the above
quantities in terms of the approximate circuit waveforms
computed with the describing function method. In particu-
lar, the corresponding bounds that result are

(32)

|| Pxl| < 0.1|P%|| + 0.04 @ (33)
VRI
and
IPx — Pl < 0.85|PFIl + 0.18 VS(’)‘. (34)
le

The latter are especially interesting since one only needs
to make calculations with the describing function tech-
nique in order to obtain these bounds.

Note that all calculated bounds become tighter as addi-
tional harmonics are included in the analysis, that is, as
additional harmonics are included in the fundamental set.
The following example illustrates this feature.

5.2. Pulse-Width Modulated Up-Down Converter

The second example to be studied is the pulse-width
modulated up-down converter of Fig. 7. The calculations
presented here apply for the continuous conduction mode.
The analysis could be modified to include the discontinu-
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Fig. 7. Up-down converter model.

ous conduction mode, as well, but with some additional
complication. This circuit is usually designed so that the
ripple in the inductor current and the output capacitor
voltage are small fractions of their respective dc values.
The circuit has traditionally been analyzed with the state-
space averaging procedure [8], [9]. Our analysis provides a
bound on the energy in the ripple and a bound on the
error in the dc component when dc equilibrium analysis of
the so-called state-space averaged model [8] is carried out.
This is precisely describing function analysis with only the
dc component. In the case where dc and certain principle
harmonics are included in the describing function calcula-
tions, our analysis provides a bound on the energy in the
residual (ignored harmonics) of the ripple waveforms and
a bound on the energy in the error in the dc and principle
harmonics computed with the descricing function method.

The first step is to partition the circuit into a linear
reactive two-port and a time-varying resistive two-port as
shown in Fig. 8. In this example, the resistive two-port is
linear, but time-varying. As in the previous example, the
series resistance r, + r; associated with the inductor (and
possibly the power switches) is split into two terms, namely,
a damping term r, associated with the inductor and a
term r; associated with the switch network. A similar step
is taken with the load resistance. With this partition, the
linear two-port is modelled by

R,

—i/Ry r, +sL 0
vu/VRy 0 !

Ul/\/R_l
_iz\/R_z ’

R,(sC + g,)
(35)
where /R, and /R, are scaling factors. We find
R, 1
Yo < max | —, . (36)
0 ( T Rzgo)

The switched resistive two-port is modelled by
Ul/\/R_l _ r./R, M(l - u)
iR, | | -yR/R (1 -w R,
| VR Juvs Ry
Uz/\/R_z 0

+ , 37
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Time-Varying, Resistive 2-Port

Fig. 8. Partion of up-down converter.

where u is an indicator of switch position as shown in
Figs. 7 and 8. For this particular switched two-port, it is
possible to compute €, the measure of incremental lossy-
ness. We find

_ min(r;/Ry, gHR,)
T R/R)A+ 7y

(38)

It is possible to pick R,, R,, and the ratios r,/r, and

80/8 to make our bounds as tight as possible. Here, we
make the convenient choices
Ry =r, 39
e =71 (40)
R, =1/g, 41)
80 = 8o- (42)

A result of the above selection is that y, = 1. Any
design that attains a useful level of power efficiency must
have r, < 1/g,. Assuming r, = 1/(9g,), we find € = 0.1.
The gain parameter y depends upon how many harmonics
are included in the describing function analysis. If we
include only dc terms, that is, the analysis corresponds to
equilibrium computation with an averaged model, we esti-
mate y = 0.02. The rationale for this estimate is that at
the frequency of the first harmonic (the switching fre-
quency), a typical circuit will satisfy |jw,L| > 50r, and
|jw,Cl > 50g,. If the first N harmonics are included in
the analysis, then we would estimate y = 0.02/(N + 1).

Now, we can calculate various bounds of interest. If
only the dc component is included in our analysis, the
bound corresponding to (11) takes the form

1 Px|| < 0.044ll PH(Px, u(e))Il. (43)

For the hybrid model (37) of the switched two-port net-
work, it is possible to compute the bound

(44)

= V
I PH(Px, u(e))! < 1.5)Px| + 0.5“

TR:
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on the harmonics it generates by operating on the funda-
mental (dc) term. Combining these inequalities generates
the explicit bound

s

TR

on the energy in the ripple waveforms expressed in terms
of the dc components of the actual circuit waveforms.
Once again, the tightness of the bound indicates that the
describing function method (or simply averaging in this
case) will be effective. The bound corresponding to (13)
on the error in the computed dc term takes the form

| PEH(Px, u() < 0.066] Px|l + 0.022 (45)

I1Px — Pl < 0.44ll PBH(Px, u(e)). (46)
Combining with (44) yields
|Px — P%|| < 0.66||Px|| + 0.22 ‘/RL , 47
1

which is a bound on the error in the computed dc terms
expressed in terms of the actual circuit dc terms.

One would expect the describing function method to
yield improved results as additional harmonics are in-
cluded in the analysis, and this is made evident by the
bounds computed below for this example. If the dc and
first N harmonic terms are included in the describing
function analysis, then the bound corresponding to (11)
takes the form

_ ) 02 \, -
| Pxll < N+1(2+ N+1)”PH(Px,u(t))", 48)

Combining with the bound (44), which is still valid, but
not tight, we obtain

Pl < —2 (4 22 Y1p
<
_N+1( +N+1) d
| oot (2 02 o)
+ —.
N+1 N+1) VR,

This is a general formula for an asymptotically convergent
bound on the harmonics generated by the fundamental
components of the actual circuit waveforms. With the dc
and first N harmonics included in the analysis, the bound
corresponding to (13) takes the form

IPx - Pg 02 0.2 I3 I
_ pill < N+1(2+ N+1) PH(Pr, u(). (50)

Combining with (44), we obtain

o pil< <22 (20 %2 \i;e
- Pill < +
Tl e
L0t (2+ 02 \| ¥ | 1)
N+1 N+1) VR |
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which is an asymptotically convergent bound on the en-
ergy in the error in the fundamental components as
computed with the describing function method. This bound
is expressed in terms of the fundamental components of
the actual circuit waveforms.

VI. CoNCLUSION

After establishing conditions for the existence, unique-
ness, and stability of a limit cycle in a periodically switched
circuit, this paper offers a justification for the use of the
describing function method for computation of the limit
cycle. In contrast to previous work, nonlinear elements
that do not satisfy a Lipschitz condition can be included in
the analysis. The analysis presented here generates ex-
plicit bounds on the error incurred with the describing
function method. The bounds are shown to become arbi-
trarily tight as the number of harmonics included in the
analysis increases.

A. APPENDIX
INCREMENTAL PAssIviTY THEOREM

Theorem A.1 (Incremental Passivity Theorem): Suppose
that the operator labelled H, in Fig. 9 has finite incre-
mental gain y and is incrementally passive. Suppose that
H, is incrementally passive and satisfies {H,x — H,x’,
x —x'} > el Hyx — Hyx'|I* for € > 0, ie., Hy ! is strictly
incrementally passive if it exists. Then, (i) for any inputs
u, and u, with bounded norm, the outputs e, e,, y;, y,
are unique and have bounded norms, and (ii) the mapping
(uy,u,) - (ey, €5, ¥, ¥,) has bounded gain.

The proof of this theorem is modified from a very
similar proof in [28]. The important part of the proof that
establishes uniqueness also generates the bounds used in
Section 4. In particular, by considering two sets of inputs
(u;, u,) and (4}, u}), we obtain

{e, —¢|,He, — Hie}} + {e, — €5, Hye, — Hye)}
= {u, —u},He, — He} + {u, —u,, Hye, — H,é,}.
(52)

Then by invoking the incremental passivity properties and
the bound on H,, we find

ellHye, — Hyehll” < ylluy — will- lley — eqll + lluy, — uhll
lley — el + Ny — will - lluy — uhll. (53)
From the block diagrams, we find
elle, = ul? = 2€llu, — wll-lle, — €;ll + elle; — &l
< Ylluy = will-lley — eyl + lluy — syl
“lley — eyl + lluy — uyll - lluy — bl (54)
which leads to
elle; — el < Qe+ ylu, — will- lle, — €}l
+ lluy — uhll-lle; — eill + lluy — ubll - Ny — wfll.  (55)
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Fig. 9. Feedback system.

By considering the case where u; = u), we obtain the
bounds

(56)
(57

lfle, —elll < 1/ellu, — il
Y
lle, — esll < ;Iluz — .

By considering the case where u, = u,, we obtain the
bounds

Y
MfwwsP+z“m—WL (58)

Y
uq—@myﬁ+;ﬁm—mw (59)

These are the relationships used in Section 4.
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