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Generalized Averaging Method for Power
Conversion Circuits
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Abstract—The method of state-space averaging has been successfully
applied to pulse-width modulated power converters, but has its limi-
tations with switched circuits that do not satisfy a small ripple condi-
tion. This work considers a more general averaging procedure that
encompasses state-space averaging and is potentially applicable to a
much broader class of circuits and systems. In particular, the tech-
nique is shown to be effective on a number of examples including res-
onant type converters.

I. INTRODUCTION

TATE-space averaging [1]-[3] has been demonstrated to be
an effective method for analysis and control design in pulse-
width modulated (PWM) switching power converters. How-
ever, as has been noted in the literature, the class of converters
that this method can be applied to is limited. Conditions for the
justification of state-space averaging have been characterized
by a small ripple condition, by a linear ripple approximation
[1], and by the degree to which certain vector fields commute
[2]. With the small ripple approximation, the assumption is that
a Fourier series expansion for a finite length segment of a circuit
waveform should be dominated by its dc term. The linear ripple
approximation requires that the circuit waveforms appear to be
linear functions of time when examined over a time interval in
between switch instances. This condition has been stated more
precisely in [2] in terms of the Lie bracket of a pair of matrices.
A recent paper [6] studied the application of classical averaging
techniques to PWM circuits, and has developed an asymptotic
framework where solutions to switched systems (including those
with large ripple) may be approximated to arbitrary accuracy by
a power series in a small parameter. The small parameter is
related to the ratio of the switching period and the system time
constants. We note here that this ratio is typically small for fast-
switching PWM circuits, but not for resonant type converters.
Because of the conditions listed above that limit the appli-
cability of state-space averaging, the method cannot be applied
to a wide range of power circuits that includes the resonant type
converters. The basic limitation in resonant converters is that
these circuits have state variables that exhibit predominantly os-
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cillatory behavior. This paper investigates a more general av-
eraging scheme that can, in principle, accommodate arbitrary
types of waveforms. The method is based on a time-dependent
Fourier series representation for a sliding window of a given
waveform. For example, for an arbitrary time-domain wave-
form x (®), the method considers the Fourier coefficients of x(s)
for s € (+ — T, t] at the time instant 7. Simplifying approxi-
mations can be made by omitting insignificant terms in this se-
ries. For instance, to recover the traditional state-space averaged
model, one would retain only the dc coefficient in this averaging
scheme.

Previously developed methods for analysis and control de-
sign in resonant converters have relied mainly on two ap-
proaches, sampled-data modeling [4], [5] and phase-plane
techniques [7], [8]. The sampled-data approach taken in [4],
[5] results in a small-signal model for the underlying resonant
converter with the perturbation in switching frequency as the
input. One difficulty with this approach is the requirement of
obtaining a nominal periodic solution as a first step in the anal-
ysis. The phase plane method of [7] is a basic approach to ob-
taining a steady state solution for a resonant converter, and the
control scheme of [8] based on this method is evidently effec-
tive. A limitation of this approach is its restriction to second
order systems; it is not obvious how one can incorporate addi-
tional state variables that are associated with the load or the
source dynamics. In contrast, the method presented in this pa-
per is an averaging scheme that can be applied, in principle, to
any periodically (or nearly periodically) driven system.

The remainder of the paper is organized as follows. The gen-
eralized averaging technique is introduced in Section II. Ex-
amples of its application in resonant and in PWM converters
are presented in Section IIl. For purposes of comparison with
the method considered here, Section IV reviews some of the
main techniques used in analyzing oscillatory behavior in non-
linear systems. The Appendix contains some comments on the
justification of our scheme when the switching frequency is not
held constant.

II. GENERALIZED AVERAGING

The generalized averaging method is based on the fact that
the waveform x(®) can be approximated on the interval (¢ —
T, t] to arbitrary accuracy with a Fourier series representation
of the form

x(t—T+s)= ; {x)y (1) ehtimTen (1)

where the sum is over all integers &k, w, = 27 /T, s € (0, T1,
and the {(x),(t) are complex Fourier coeflicients. These Fou-
rier coefficients are functions of time since the interval under
consideration slides as a function of time. The kth coefficient,
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also to be referred to as the index-k coefficient, is determined
by
T

x(t = T + s)e Aat=T+9 gg. (2)
o

: 1
(), (1) == S
The analysis computes the time-evolution of these Fourier se-
ries coefficients as the window of length T slides over the actual
waveform. Our approach for this is to determine an appropriate
state-space model in which the coeflicients (2) are the state vari-
ables. '
As an aside, note that one possible approach for deriving the
theory of state-space averaging is to consider the one-cycle
average

=1 ] soas 3)

for the state x(¢) of a switching converter operating at fre-
quency 1/7. The connection with our scheme is that x(z) =
{x )0 (1) corresponds to the dc coefficient in the Fourier series
representation (1). More details on this are given in Section III.

Certain properties of the Fourier coefficients (2) are key for
the analysis and are detailed below.

Differentiation with Respect to Time: The time derivative of
the kth coefficient is computed to be

o0 =(50) 0 - ot @

This formula will be very important in computing the form of
an averaged model involving the Fourier coefficients. The case
where w, is time varying will also need to be considered for the
analysis of systems where the drive frequency is not constant,
e.g., in resonant type converters. In this case, the formula (4)
is only an approximation, but, for slowly varying w,(¢), itis a
good approximation. The Appendix gives details on the ap-
proximations involved.

Transforms of Functions of Variables: Another important in-
gredient in the Fourier series coefficient representation of a sig-
nal involves the computation of the following:

<f(.X|,X2,"' 7xn)>k (5)

where f(®, - -+, ®) is a general scalar function of its argu-
ments. In nearly all cases, it is impossible to obtain an explicit
form for (5) in terms of a finite number of the coefficients ¢ x );.
So, instead, we aim to approximate this quantity. One approach
for this is by the describing function method [13]. As outlined
in Section 1V, this method is based on the assumption that the
arguments x, x,, * - * , x, are sinusoidal in nature or perhaps
have some other fixed waveshape. For instance, one special case
is where it is desired to compute { f(x) ), and { f(x))_,, and
it is known that x is dominated by its fundamental Fourier com-
ponents. This would fit the framework of the sinusoidal describ-
ing function method. An example of this type is given in Section
IIT in the context of a resonant converter.

A procedure for exactly computing (5) is available in the case
where f(®, * - -, ®) is polynomial. The procedure is based on
the following convolutional relationship:

(xy) = 2dx)_ (), (6)

where the sum is taken over all integers i. In many cases, we
shall rely on many of the terms in the series in (6) being neg-
ligibly small. The quantity in (5) can be computed in the case
where f (e, * -+, ®) is a polynomial by considering each ho-

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 6, NO. 2, APRIL 1991

mogeneous term separately. The constant and linear terms are
trivial to transform. The transforms of the quadratic terms can
be computed using (6). Homogeneous terms of higher order can
be dealt with by factoring each such term into the product of
two lower order terms. Then the procedure can be applied to
each of the factors. This process is guaranteed to terminate since
factors with only linear terms will eventually arise.

Application to State-Space Models of Power Electronic
Circuits: Here we consider the application of the method to a
state-space model that has some periodic time-dependence. This
is the type of model that typically arises in a switched power
electronic circuit. For instance, consider the model

£ (1) = #lx(0), u(n)} (7)

where u (1) is some periodic function of time with period T. The
variable u(7) may be the ramp function used to implement a
PWM scheme, or may be a square wave of source voltage ap-
plied to a resonant tank circuit in a resonant converter. To apply
the generalized averaging scheme to a converter with model (7),
we simply compute the relevant Fourier coefficients of both
sides of (7), i.e.,

d
<zx>k = (flxw), (®)

for the kth coeflicient. A first step in simplifying the model is
to incorporate the rule for computing the derivative of the kth
coefficient. We obtain

%u)k = —jka(x), + (fx u),. (9)

The second term on the right-hand side of (9) can be simplified
into explicit functions of the coefficients {x); and {u ); using
describing functions. The essence in modeling is to retain only
the relatively large Fourier coefficients to capture the interesting
behavior of the system. As previously discussed, we would re-
tain only the index-zero (dc) coefficients for a fast switching
PWM circuit to capture the low frequency behavior. The result
would be precisely the state-space averaged model. For a res-
onant dc-dc converter which has some of its states exhibiting
predominantly fundamental frequency, sinusoidal waveforms
and some of its states exhibiting predominantly dc (or slowly
varying) waveforms, we would retain the index-one (and minus
one) coefficients for those states exhibiting sinusoidal-type be-
havior and the index-zero coeflicients for those states exhibiting
slowly varying behavior.

The method is demonstrated on some examples in the follow-
ing section.

III. EXAMPLES
Series Resonant Converter with Voltage Source Load

The first example to be considered is the series resonant con-
verter of Fig. 1, which has a voltage source load. The circuit
parameters are as given in the figure and the diodes are assumed
to be ideal. Note that the resonant tank frequency is approxi-
mately 36 KHz.

A state-space model for this circuit takes the form

d 1

ey {—v — V,sgn (i) + V, sgn (sin (th))}
d 1
E v = E (10)
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Fig. 1. DC-DC series resonant converter with voltage source load.

where sgn (*) indicates the sign function. Typical waveforms
for this circuit are shown in the figure. These waveforms were
generated by stepping the drive frequency between 38 KHz and
40 KHz. One of the important features of the waveforms is that
following each step change in the driving frequency, the wave-
forms appear to be amplitude modulated sinusoids. The wave-
forms evidently settle down to an approximatély sinusoidal
steady state. For this reason, these waveforms may be very well
approximated with the fundamental frequency terms in the Fou-
rier series (1). We are led to examine a model containing only
the coefficients (i )>,, {i)_{, (v),, and (v )_,. This can be
obtained by considering the application of the operator { e ),
(or equivalently ( ® ) _,) to the model (10), i.e.,

d
Sy, = —jediy, + 1 {= (o), = Vsem (i),
+ Vs<sgn (sin (wg)))l}
d
G0y, = ko), + i), (11)

Note that the elements of the two component state vector of (11)
are complex Fourier coefficients, and so this model actually

corresponds to a fourth-order state-space model with real vari-
ables. The corresponding real fourth-order model could be ob-
tained equivalently from the index-( —1) coefficients. If the
window length is taken to be T = 27 /w,, the term

2
(sgn (sin (w"t))>| = —j p (12)
is simply the constant amplitude of the first coefficient of the
Fourier series for a square wave. The term {sgn (i) ), can be
evaluated using the describing function approach by assuming
i(t) is approximated as a sinusoid over each interval of length
T. In this case, we have
. 2 je i)
(sgn (i), = 2 e/ (13)
™
Consequently, the model (11) is approximated with the time-
invariant model

d 1 2 2
“ . = —jwdi I —y = JL(I)!_V}'i
7 ¢ Jw.‘(l),+L£ (v), =V, ~e .\Jwg

d 1
AL CACO MR- C R (14)

The variables w, and V, may be considered as external inputs to
this model. One question that arises is how well the magnitudes
of the complex coefficients

<05, = ViRe (i3, ) + (m i),

2
lcoy,| =\/(Re<v)l)2+(lm-(v)l) . (15)
coincide with the amplitude of the waveforms.in Fig. 1. The
simulation of Fig. 2 compares precisely these quantities. This
figure plots on the same axes the waveforms v(r) and
2 <vy, ()] for the case where w, undergoes a step change,
and the figure similarly plots i(¢) and 2| <i ), (¢)]. It is evi-
dent from the figure that the correlation between the two types
of waveforms is excellent. Note that this averaging procedure
for the series resonant converter is very similar to that of Rim
and Cho [16] where a time-varying phasor analysis for a series
resonant converter is developed.

The utility of the method can now be realized. For instance,
it is straightforward to obtain a steady state solution for this
model by setting the derivatives of { v ), and (i ), to zero. The
solution can be computed in a closed form. This approach to
the steady state solution is similar to that in Steigerwald [15],
where an equivalent circuit is derived for steady state compu-
tations. The method here goes one step further in extending the
analysis to transient behavior as well. After obtaining a steady
state solution, the model may be linearized about the steady
state to obtain small signal transfer functions from inputs such
as switching frequency w, or source voltage V, to variables such
as (v ), or (i ). For purposes of illustration, we carry out this
procedure here.

The steady state solution is determined to be

w 2 NVI-V

A Py

(i) = jo.CCo).
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Fig. 2. Amplitude of first coefficients compared to actual waveforms.
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Fig. 3. Root locus of small signal poles as load voltage varies from zero to V.

By considering perturbations around this steady state solution it
is possible to compute the transfer function from input switch-
ing frequency w; to the capacitor voltage amplitude || (v ),].
This is given by

M Ks +2A

S+ Ks® + 255 + KEs 1 A
where M = [|[ ()7, K = 20}V, /7 Mw,, w3 = 1/LC, £ =
wy + w?, and A = w? — w2. A root locus of the poles of this
transfer function is shown in Fig. 3. The plot shows the location
of the poles as the load voltage V, increases from zero towards
V.. The poles are seen to be damped for 0 < V, < V,. For
small values of V,, there is a pair of poles located near + j(w,
— wp). This pair evidently governs the relatively slow ampli-
tude modulation seen in Fig. 2. One argument for the presence
of this slow amplitude modulation is that it is the result of beat-
ing between oscillations at the natural frequency w, and the
driving frequency w,. Note that the locus of Fig. 3 closely re-
sembles the locus of reference [4], which was determined using
an exact sampled-data model. It is also of interest that the trans-
fer function (18) has a right-half plane zero for A < 0, that is
for frequencies below resonance.

(18)

One interesting feature of the simulation in Fig. 2 is that the
high frequency modes of the model (18) are not evident in the
transient response. This can be attributed to the fact that these
modes are weakly coupled to the input, namely to perturbations
in driving frequency w;. 4

DC-DC Series Resonant Converter with Capacitor Load

A more complex example is the series resonant converter with
a capacitor load that is shown in Fig. 4. For this example, a
state-space model can be written as

d., 1 . . ;
7 =Z{—v~ v, sgn (i) + V, sgn (sin (th))}
4,.1,

d- C

d

v,,=l{abs(i)~v,,/R}. (19)

at C,

Here, sgn (®) and abs (®) are, respectively, the sign and ab-
solute value functions.
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Fig. 4. DC-DC series resonant converter with capacitor load.

In our analysis, we retain the fundamental frequency Fourier
coefficients for i and v and the dc coefficient for v,,. This choice
can be motivated by studying the converter waveforms and not-
ing that the variables i and v exhibit predominantly sinusoidal
behavior while the output voltage v, exhibits rather slowly
varying dynamical behavior. If this was not the case, more terms
could be retained in the averaged model. The key steps in ap-
plying the averaging operation to the model (19) are in com-
puting {sgn (i ) v, ), and { abs (i) ),. These can be determined
using describing function methods if i and v are considered to
be sinusoidal and v, is approximated with a constant term. With
these simplifying assumptions, we find

(sen () 0,), = 2 (0}, /= (20

Gabs (), = = ¢, (21)
In order to verify the obtained averaged model, a simulation
that compares waveforms generated by this model with wave-
forms of the underlying system is shown in Fig. 5. As is evident
from the figure, the averaged model predicts the transient be-
havior quite accurately. Analysis steps similar to those carried
out in the previous example could be performed, but we omit
the details.

PWM Up-Down Converter

In this final example, we illustrate how to refine the method
of state-space averaging by including higher order terms in the
Fourier series expansion (1). The converter of Fig. 6 operating
in continuous conduction mode can be modeled with a second
order state-space model of the form

ix=Ax+qu+bu+f

7 (22)

where the variable u takes the values 0 and 1 which correspond
to the instantaneous switch position. For nominal PWM oper-
ation at the fixed frequency f, = w,/2w, the state-space aver-
aged model can be obtained by applying the one-cycle averaging

operation { ® ), to the model (22). A refinement of the state-.

space averaged model can be obtained by considering an addi-
tional term in the series (1) that corresponds to the fundamental

I and 2*%|1<I> 1|

M
AT m]”]!ﬂ‘[nm UU” “ ‘ HHHW[”W

Fig. 5. Comparison of transient waveforms of averaged model with wave-
forms of underlying resonant converter with capacitor load.
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Fig. 6. Up-down converter.

component of the ripple. For this, we consider the application
of both (® ), and { ® ), to the model (22). The result is

d
p (x)y = A(x), + B[(x) {uy, + {x) {u)_,
+(xy_ Cuy,] +buy, +f

£ (03, = ACx), = i Cxy, + B[, Yy + ()0, ]

Note that the rule (6) is used to approximate quantities like
{xu)o and {xu),. For open-loop operation, {u ), and {u ),
are constant, and so-the model (23) is linear and time-invariant
in this case. A simulation of an open-loop transient is shown in
Fig. 7. The figure compares the inductor current waveform of
the actual circuit, the inductor current waveform e* ~ “*® of the
state-space averaged model, the dc component (i ), of the in-
ductor current of the refined model (23), and an inductor current
waveform reconstructed from the refined averaged model de-
termined by

i(1) = i)y _ (e + (i) (1) + (i), (e,

The switching frequency has been selected to be relatively low
so that the ripple is emphasized. As can be seen from the figure,
the additional term in (23) significantly decreases the error be-
tween the waveform of the averaged model and the underlying
system. Evidently, it is possible to include more terms in the
Fourier series representation to further decrease approximation
error.

(24)
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Fig. 7. Comparison of refined state-space averaged model with traditional
state-space averaged model.

The refined averaged model is especially useful for analysis
and control design in the case where ripple is not small. For
instance, the eigenvalues of an equivalent continuous time
model derived from an exact sampled-data model for the pres-
ent example can be determined to be

Ny = 1Tlog (M2{®(T)}) = (—1.029 + j1.328) * 10°.

Note that @ (T') is the transition matrix for (22). In comparison,
the eigenvalues of the state-space averaged model are given by

A% = (=1.029 + j1.230) * 10*
while those of the refined model are given by

Aed = (=1.029 + j1.325) * 107,
J
(—1.029 + j5.149) * 10%,

(=1.029 + j7.707) * 10°.

One pair of the eigenvalues of the refined model is seen to ap-
proximate the eigenvalues of the underlying system much more
closely than those of the usual state-space averaged model. e

IV. HISTORICAL NOTES ON AVERAGING AND
OSCILLATIONS IN NONLINEAR SYSTEMS

For purposes of comparison with the averaging procedure in-
troduced in the preceding sections, we briefly review other rel-
evant work on averaging in nonlinear systems. A starting point
for the discussion is with the method of classical averaging [6],
[12], [18]. A periodic system is said to be in standard form if
it has the form

x=ef(x,1);

where € is a small parameter. Classical averaging theory is based
on an asymptotic approximation in e for the solution x(¢) of
(25) in the form

x(0) = x, (25)

x()y =y(0) + ¥ (y, 1) + €V (y, 1) + - -+ (26)

where the ¥, (y, t) are zero-average functions and y(t) is the
solution of the averaged equation

y=esi(y) +E€g(y) + - (27)
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The initial condition y(0) of (27) is selected to be consistent
with x (0) through (26). This procedure can be applied naturally
to PWM converters as studied in [6]. It turns out that by retain-
ing only the first order term in (27), one obtains the state-space
averaged model. Useful ripple estimates can be obtained when
the first and second terms in (26) are retained, as illustrated in
[6].

For a system such as the series resonant converter that is not
in the standard form (25), a preliminary transformation can be

- used to transform the system into the standard form. A general

procedure for this is outlined in [18]. For purposes of illustra-
tion, consider a second-order nonlinear system (not unlike the

series resonant converter with voltage source load) modeled by
i+ wix =eg(x, x,1). (28)

For this example, a preliminary transformation is given by

1 .
zy cos (wot) + 2z, — sin (wef)

x =
Wo
X = —z,wp sin (wyt) + 2z, cos (wpt), (29)

resulting in the transformed system

. € . 2

= == sin (wor)g(£{z1, 22}, ¥{z1, 22}, 1)

0
7 = ecos (wor)g(#{z1. 22}, {21, 22}, 1). (30)

An equivalent transformation to variables of instantaneous phase
and instantaneous amplitude has been utilized in the classic work
of Bogoliubov and Mitropolski [12]. In particular, reference
[12] considered the transformation

x(1) = a(t) sin {wor + 0(1)} (31)

k(1) = a(r)w, cos {wot + 6(1)}. (32)
In either case, the result is a system that is transformed to the
standard form. The classical averaging procedure may then be
applied.

Note that a periodic steady state solution of (28) may have
its period controlled by the frequency of the time-varying driv-
ing term g (x, X, t). In this case, the corresponding transformed
and averaged system cannot exhibit constant steady state be-
havior, since a constant vector z(t) = z, would generate a so-
lution with frequency w through (29). In contrast, the procedure
introduced in the present paper transforms a periodic system
into a time-invariant system. It is of interest that the pioneering
work of Van der Pol [11] considered an approximate solution
for (28) of the form

x(1) = by(1) sin (1) + by(1) cos (w,1) (33)
where w, corresponded to the driving frequency and the vari-
ables b, (1) and b, (1) were supposed to be slowly varying func-
tions of time. A steady state solution of (28) would then
correspond to constant (or nearly constant) b, (¢) and b,(¢t) in
(33).

Another technique that is closely related to the methods out-
lined above is the describing function method discussed in de-
tail in Gelb and Vander Velde [13]. This method relies on
harmonic balance for analyzing steady state and transient oscil-




SANDERS et al.: GENERALIZED AVERAGING METHOD FOR POWER CONVERSION CIRCUITS 257

N

Fig. 8. Nonlinear feedback system.

lations in nonlinear systems. To understand the method, con-
sider the autonomous system of Fig. 8 that has a static
nonlinearity N(®) in the feedback path. The input to the non-
linearity is labeled x () and the output is

y(1) = N{x(n)}.

The sinusoidal describing function method is a technique for
analyzing limit cycles in a system of the type of Fig. 8 or in
such a system that has an external periodic input. The basic
premise of the describing function method is that x(t) is ap-
proximately a sinusoidal waveform, i.e.,

(34)

x(t) = X sin (wt). (35)
If the nonlinearity is not too severe, that is, it does not generate
excessively large harmonics, and if the linear transfer function
G(s) is a good low pass filter, the assumption that x(¢) is sin-
usoidal is quite plausible. The describing function method char-
acterizes y(r) by its fundamental frequency component

y(1) = N(X)x(1) (36)

where 9T (X)) is the ratio of the fundamental component of y(t)
to that of x(#). 91 (X)) is called the sinusoidal describing func-
tion for N(®) and is dependent on the amplitude X of the oscil-
lation. For the loop of Fig. 8, an approximate condition for a
steady state oscillation is

1 + G(jw)IN(X) =0, (37)

or equivalently
G(jw) = —1/9N(X). (38)

The power of the method is evident from (38) since this equa-
tion can be solved graphically by plotting G(jw) and
—1/90(X) on the complex plane and determining intersection
points of these graphs. Each intersection point (X*, w*) gen-
erates a candidate for an approximate limit cycle solution of the
form

x(r) = X*sin (w*t). (39)

The paper of Bergen and Franks [14] gives conditions under
which an exact periodic solution is nearby and gives error
bounds on the approximate solution in terms of the operators
G( jw) and N(*). The describing function method can also be
used when periodic external signals enter the system. In this
case, one seeks a periodic solution with fundamental frequency
equal to the drive frequency. The sinusoidal describing function
method generates the amplitude and phase of an approximate
solution.

The describing function technique has been generalized for
the analysis of transient oscillations in [13]. The generalization
assumes a solution of the form

x(2) = X(1) e, (40)

which can be identified with the method of slowly varying phase
and amplitude [12] if one takes ¢ (1) = wot + 6(¢). The tran-
sient analysis proceeds by noting that

Xl 4 j§ Xl

x(1) =
- (}—’g + j¢> XeO (41)
and identifying these quantities by
x(2) = (a(t) + jo(2))x(r) = sx(1). (42)

Nonlinear elements are replaced by amplitude dependent de-
scribing functions and harmonic balance is then imposed. The
result is a pair of coupled differential equations (corresponding
to real and imaginary components) in ¢(7), w(#), and the de-
rivatives of these variables. Reference [13] continues by giving
approximate schemes for solving the obtained differential equa-
tions.

Other work on the analysis of transient behavior in oscillatory
systems is due to Mees [17]. Reference [17] describes a pro-
cedure based on instantaneous Fourier coefficients for studying
the small signal stability of limit cycles in nonlinear systems.
The instantaneous Fourier coefficients in [17] are defined in
nearly the same way as we have defined our time-varying Fou-
rier coefficients. However, the procedure in [17] is aimed only
at small signal stability analysis.

V. CONCLUSION

A new approach to averaging in power electronic circuits has
been introduced, and the method has been seen to be useful in
analyzing resonant-type converters. Further, the approach of-
fers refinements to the theory of state-space averaging, permit-
ting. a framework for analysis and design when small ripple
conditions do not hold. The method may find applications in
simulation as well as design since it is considerably easier to
simulate an averaged model than a switched model.

APPENDIX
TIME-VARYING FREQUENCY

As briefly discussed in Section II, the analysis based on (1)
and (2) is valid if w, is constant. In the case where the frequency
w,(t) is time varying, it is appropriate to consider an instanta-
neous phase function defined via

d = 3
2 00 = (). (43)
In this framework, the Fourier analysis should be performed
with respect to the basis functions {e/*”’} for () in some
interval (8, — 2, 8,] rather than the basis { e**'}. The time
interval for the analysis now depends on the instantaneous phase

function in the following way. Define T(¢) to be the duration
of time so that the phase function varies by exactly 27 on the
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interval (+ — T(t), t]. That is, for a particular time ¢,, T(¢,) is
defined by

0, =0(1)

0{t, — T(1,)}.

T(t), t], the natural generalization

(44)

0, — 2« (45)

1]

Now for the interval (r —
of (1) is

x(1 = T(0) + ) = Z (), () M0 (46)

for s € (0, T(¢)]. In this case, the Fourier coefficients { x ), (#)
need to be defined via
@)

SB(!)*ZW
t
Sr—T(r)

T(n)

)

cw(t = T(r) +s)ds (47)

where s(0) in the first line of (47) represents a local inverse
map from phase to time. An easy calculation performed after
changing the variable of integration in (47) by o = T(¢) — s
yields

i

(x),(1) x{s(O)}e””dG

x(s) e M y(s) ds

i

x(r - T(1) + s) e KO —T(1)+5)

d
= (x),(2)

=x{t = T(t)} e M o {t — T(1)} T(r)

T(t)
+ SD {X(t — ¢) e MU= 4 (t — o)
+ {a,(t — 0) — jkol(t — 0)}

. X(l _ 0’)87/*8“;0)} do. (48)

The formula is equivalent to

% (x),(1) = x{t = T()} e =T o {1t = T(1)} T(2)

+ (x), () +<<wi —jkw_‘> x>k(t). (49)

Another simple calculation yields

d

ST =1- @s(1)

wx{t - T(t)}'

It is now clear that for the case where w, is constant, (49) re-
duces to (4). Furthermore, for slowly varying w,(t), the last
term in (49) is well approximated by —jkw, ¢ x ),. The term x { ¢
— T(1)} e MU=T@E 4 L1 — T(1)} T(t) is also guaranteed
to be small if w () is slowly varying since 7(¢) is given by
(50).

Another important consequence of the formula (49) is that
there is no direct feedthrough term into (x ),(#) from w,(¢).
Hence, in the case where the frequency w,(7) undergoes a step
change, we observe no step (or impulsive) behavior in {x ), (¢).
This is of interest in the examples based on resonant converters.

(50)
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