IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 7, NO. 1. JANUARY 1992 17

Lyapunov-Based Control for Switched Power |
| Converters

Seth R. Sanders and George C. Verghese

Abstract—Beginning with fundamental properties such as
passivity or incremental passivity of the network elements com-
prising a switched power converter, the nominal open-loop op-
eration of a broad class of such converters is shown to be stable
in the large via a Lyapunov argument. The obtained Lyapunov
function is then shown to be useful for designing globally sta-
bilizing controls that include adaptive schemes for handling un-
certain nominal parameters. Numerical simulations illustrate
the application of this control approach in dc-dc converters.

I. INTRODUCTION

OST control schemes for power electronic circuits

in present use are obtained by linearizing a nonlin-
ear model about a nominal operating point or trajectory.
Large-signal transients- that occur at power up or overload
recovery are handled in an ad hoc manner. Designers ana-
lyze each circuit individually to prescribe a scheme to ac-
commodate a designated set of large-signal transients.
This paper addresses the issue of how one might do bet-
ter. In particular, the paper develops a methodology for
designing control laws for fast-switching converters that
result in globally stable behavior, robustness against par-
ametric uncertainty, and satisfactory transient response.
The main approach in this paper is based on the use of
Lyapunov functions.

There has been considerable previous work along these
lines. The paper of Erickson er al. [11] develops a large-
signal averaged model for switched converters and points
out the hazards of control designs based on small-signal
linearized models. The previous work on large-signal
control schemes can be divided roughly into two groups.
One is based on so-called ‘‘switching-law’” controls where
the position of a controlled switch is directly commanded
as a function of the instantaneous values of the circuit
variables. Examples of these are the sliding mode control
schemes of [1]-[7], [21] (which include current-mode
control) and the bang-bang control schemes of [9], [10],
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[15]. The second approach relies on the state-space aver-
aged model for the converter of interest. Representative
schemes are those in [12]-[14], [22]. References [12] and
{14] also consider control design using Lyapunov func-
tions.

The paper is organized as follows. Section Il develops
fundamental stability properties for a broad class of
switching converters. In particular, we derive the form of
a Lyapunov function that illustrates that each member of
this class is open-loop stable. The Lyapunov-based con-
trol approach is introduced in Section III. That section
includes a simple example to demonstrate the method, an
outline of the general approach, and an illustration of how
an adaptation scheme can be incorporated to handle un-
certainties in the nominal operating point.

II. OPEN-LOOP STABILITY OF SWITCHING CONVERTERS

In this section, switching converter systems (under-
stood to include source and load) that consist of an inter-
connection of ideal dc sources, ideal switches, incremen-
tally passive resistors, and passive linear reactive elements
are considered. Multiport circuit elements are included in
the development here. This class of switching converters
is shown to be stable by exhibiting a Lyapunov function
that corresponds to the energy in the increment with re-
spect to an arbitrary nominal state trajectory. The argu-
ment is extended to include nonlinear reactive elements
that are strictly relatively passive in the case where the.
switching frequency becomes infinite and stability with
respect to an equilibrium point is considered. Essential
background on network theoretic issues for the develop-
ment in this section is given in Appendix A. (Also, see
[16]-[18].)

A. Switching Converter Stability Under Finite Switching
Frequency

Let the switching converter be composed of ideal dc
sources, ideal switches, incrementally passive resistors,
and linear passive reactive elements. A diode may be con-
sidered as either an ideal switch or as an incrementally
passive resistor. We suppose the switches are operated in
accord with a given arbitrary switching pattern and sup-
pose that we are given a nominal solution corresponding
to the given switching pattern.

For each branch of the network, denote the nominal
trajectory by {#(#), i(¥)}, and form the (not necessarily
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small) increments with respect to the nominal trajectory
for each network branch, i.e.,

i(r) = i(r) — i(n
su(t) = v(r) — (1) (N

By applying Tellegen’s theorem to the increments in all
the network branches when the circuit is in any one of its
topologies, we obtain

0= X sidv+ 2 8idv+ 2 bidw
desources Switches Res.
+ 2 8idv + 2 8ibv. 2)
Ind. Cap.

The summation involving dc sources is always zero as the
increment in either voltage or current of each term is nec-
essarily zero. The terms involving switches also add zero
contribution to the sum in (2) for the same reason. The
third summation on the right-hand side of (2) is always
nonnegative as each term is individually positive or zero
as a result of the incremental passivity of the resistors. In
fact, this summation can be thought of as the dissipated
power in the increment with respect to the given nominal
trajectory. The remaining two summations represent the
time rate of change of the stored energy in the increment
as

4 Vox) = 2 (5i)*(Buy) + 2 (i) ()
dt Ind. Cap.

where

V(bx) = % (2) (86, )* L (8iy)
+ CZ () (bv)* Cr(dry) 0))
ap.

and L, and C, represent inductance and capacitance ma-
trices, respectively, for multiport coupled inductances and
capacitances. (Note that a particular L; or C;, may be a
scalar if the corresponding element is a two-terminal re-
active element. Also note that the superscript * indicates
transpose.) Because of the assumption on passivity of the
reactive elements, the quantity V(8x), which we refer to
from now on by the suggestive name energy in the incre-
ment, is a positive definite quadratic function of the in-
cremental state variables. Because (2) holds identically
for any of the possible circuit topologies, the energy in
the increment is a Lyapunov function for the given nom-
inal trajector. In particular, we have

d Vx) = — 2 6v di < 0. (5)
dt Res.

In conclusion, the energy in the increment is a Lyapu-
nov function for the given nominal trajectory, and we see
that the nominal trajectory is stable in the large. Because
the nominal trajectory selected above can be taken as any
solution trajectory, this statement implies that any two so-
lution trajectories do not diverge.

Typically, asymptotic stability in the large can be con-
cluded as well as at least some parasitic loss is always
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Fig. 1. Up-down converter redrawn to illustrate stability in case of dis-
continuous conduction

associated with each energy storage element, i.c., series
resistance with inductors and parallel leakage resistance
with capacitors. An argument for asymptotic stability ap-
pears in [16] for circuits that have a dc equilibrium point
and consist of only two-terminal elements. In [16], los-
siness is guaranteed to be associated with each state vari-
able by excluding inductor-capacitor-voltage source loops
and inductor-capacitor-current source cutsets. (In this
case, we would require that all resistors be strictly incre-
mentally passive.)

A special case of the above result is when the switches
are operated with a periodic switching pattern and there
exists a nominal periodic steady-state solution. In this
case, the result states that the given periodic steady-state
trajectory is stable in the large. This result is of particular
interest for the case of a dc—dc converter operating with
constant switching frequency. Note that this result holds
for dc-dc converters operating in the discontinuous
conduction mode. This can be seen by redrawing the
schematic for the de-dc converter of interest with an ideal
single-pole double-throw (SPDT) switch and an incre-
mentally passive resistive device (i.e., a diode) replacing
each transistor-diode pair. For example, we would re-
draw the up-down converter of Fig. 2 as shown in Fig.
1. The circuit of Fig. 1 satisfies the conditions for its
nominal periodic trajectory to be stable in the large, and
it makes no difference whether or not the nominal trajec-
tory contains a portion where the inductor current is iden-
tically zero.

B. Stability under Infinite Switching Frequency and
Constant Duty Ratio

The aforementioned theory can be extended to the case
where the switching frequency becomes infinite. This case
is naturally analyzed with the state-space averaged model
for a converter, and in this way an open-loop stability
result can be obtained for state-space averaged models.
The main difference from the case of finite switching fre-
quency is that one needs to consider the stability of an
equilibrium point for an averaged model of a dc-dc con-
verter rather than a limit cycle. In such a setup, it is pos-
sible to include nonlinear reactive elements as well as
nonlinear resistive elements. This is of interest in power
electronic circuits because nonlinear reactive elements do
occur in practice. The following theorem summarizes the
result for infinite switching frequency.

Theorem 2.1: Suppose that a switching converter is
constructed from ideal switches, ideal dc sources, incre-
mentally passive resistors, and reactive elements that are
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Fig. 2. Up-down converter.

strictly relatively passive and that its averaged model has
an equilibrium point, then the equilibrium is stable in the
large.

This theorem is easily proven by demonstrating the ex-
istence of an appropriate averaged circuit model. See [23]
and [24] for details. We rely heavily on this result in the
sequel where control laws based on state-space averaged
models are developed.

III. LyapuNov-BAsep CONTROL DESIGN

In this section, an approach to control of switching
power converters based on the use of Lyapunov functions
will be introduced. The main focus will be on control de-
sign based on the state-space averaged model for a given
switching converter. The converters of interest are those
that satisfy the conditions guaranteeing that nominal state
trajectories are globally stable under open-loop operation,
specifically converters constructed from incrementally
passive resistors, ideal sources, ideal switches, and pas-
sive linear reactive elements. One particular choice of
Lyapunov function for control design purposes that will
be of interest is the energy in the increment.

We begin by illustrating the Lyapunov-based control
method with an application to an up-down converter.
Then, we demonstrate how such a control design can be
obtained in a more general way. There is typically some
freedom in the choice of Lyapunov function for the con-
trol design, but we exhibit some particular advantages of
using the energy in the increment. Finally, we show how
an adaptation scheme can be incorporated to handle par-
ametric uncertainty. Generalizations to converters con-
taining nonlinear circuit elements, to converters that han-
dle time-varying input-output waveforms, and to
converters operating in the discontinuous conduction
mode are given in the thesis [23]. A method (dual to the
control design approach) for designing state observers is
also considered in [26].

A. Example: Up-Down Converter

Consider the up-down converter of Fig. 2, which has
a state-space averaged model of the form

x'=Ax + (Bx + b)d ©6)

where the two-component state x consists of the deviation
of the inductor current from its nominal value (x; = i —
i,) and the deviation of the capacitor voltage from its
nominal (x, = v — v,), and where the input d is the de-
viation in the duty ratio from its nominal value (d = d, —
d,). (Note that d, indicates the total duty ratio here.) The
parameter values listed below were selected for operation
at a switching frequency of 50 kHz.

C =54uF
L = 0.18 mH
R =
d,=3/8
V=15V
I, =2A
v, = -9V
in=32A

The relevant matrices of the system are as follows:

[ 0 a- d,,)/L]
A=
-1 - dn)/c 0
5= { 0 —l/L}
1/c 0
b = [(VS - v,,)/L}
i,/C

B [L 0}
0o cl
The result on open-loop stability in Section II guarantees
that the energy in the increment is a Lyapunov function
for open-loop operation of this circuit. For the up-down
converter, the energy in the increment takes the form

V=1Li - i) +3Cv — v,) (7

or
V = jx*Qx. (8)

Differentiating V along the system trajectories, we obtain
d i
5 V0 = 3x*(04 + A*Q)x

+ 3 {x*(QB + B*Q)x + 2b*Qx} d. (9)

It turns out that Q4 + A* Q = 0 for this example, which
verifies that the energy in the increment is a Lyapunov
function for open-loop operation (d = 0). In this example,
it is also true that OB + B*Q = 0. These relationships
hold because of the lossless nature of the example con-
verter, i.e., the lack of resistive elements in the converter.
Considering these relationships, (9) simplifies consider-
ably to

d

— V) = (b*Qx) d. 10
dt

Many stabilizing control schemes can be obtained by in-
spection of (10). We consider the simple control law d =
—ab* Qx with « real and positive, modified to handle the
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duty ratio saturation constraint —d, < d < 1 — d,, i.e.,

—ay, -d, = —ay =1-4d,
d = _dn9 —oy < _dn (11)
1 —d, —ay > 1 —d,

where y = b* Qx. Here, the variable y takes the form
y=W-v) -

=W -0l = i) i - v,).

i) + i, (v = v,)
(12)

Note that the only dependence on circuit parameters is on
the nominal value of the inductor current, the capacitor
voltage, and the source voltage. This property is shared
by analogous control schemes based on the energy in the
increment for many other switching converters, as will be
discussed in Section III.C. The dependence on nominal
values of circuit variables is of crucial importance, and
this issue is addressed in Section III.D. There, a method
for adaptively estimating these values is developed.

To investigate the closed-loop behavior, we examine
the derivative of the Lyapunov function V(x) along the
closed-loop system trajectories:

4 Vx) = yd
dt
—ay?, —-d, < —ay<1-4d,
=< —d,y, —ay < —d,
(1 =d)y, —ay >1-—4d,

(13)

In the saturated regions (the second and third lines of
(13)), the time derivative of V(x) is strictly negative since
either V' < —d2/aor V' < —(1 —d,)*/a. As a result,
state trajectories quickly enter the unsaturated region. In
the unsaturated region (the first line in (13)), V(x) is
strictly decreasing if y # 0, and asymptotic stability can
be concluded by LaSalle’s theorem because y = 0 is not
a system trajectory unless x = 0. To see this, note that y
= 0 implies d = 0 and the following:

b*QOx =0

b*QAx = 0 (14)

with the last line in (14) obtained by noting that y' = 0.
The existence of a nonzero solution x to (14) is equivalent
to the statement that the pair {b*Q, 4} is unobservable.
However, this pair is observable in this example, and
therefore there are no system trajectories that do not con-
verge to the origin.

In this example, we have not considered the effect of
lossiness due to parasitic and/or load resistances. The ef-
fect of such passive resistances would only enhance our
stability result by causing additional nonpositive terms of
the form —x* Rx (with R positive semidefinite) to be added
to the terms on the right-hand sides of (13).
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Fig. 3. Root locus for linearized closed-loop control system.
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Asymptotically, the decay of the Lyapunov function
V(x) is controlled by the eigenvalues of the small signal
model obtained by linearizing the closed-loop system
about x = 0. In this example, there is some freedom in
placing the eigenvalues of the linearized closed-loop sys-
tem by choice of the gain a. A root locus of the closed-
loop eigenvalues of the small-signal model is shown in
Fig. 3. To minimize the maximum of the real parts of the
eigenvalues, for example, the gain should be selected so
that the two eigenvalues coincide on the real axis at
—20.05 krad/s. An easy calculation indicates that the
value of the gain required to obtain this eigenvalue place-
ment is approximately o = 0.00785. In the remainder of
the discussion of this example, a value of the gain of o =
0.008 is used. The resulting closed-loop eigenvalues are
at about —16.7 and —24 krad/s. Note that in this ex-
ample the dynamical behavior of the small signal closed-
loop dynamics is limited by the natural resonant fre-
quency (1 — d,,)/«/L—C of the open-loop state-space aver-
aged system. Because the bandwidth of the closed-loop
dynamics is usually designed to be approximately an or-
der of magnitude below the switching frequency, and
since this is also a typical resonant frequency of the open-
loop dynamics for a reasonably designed converter, the
preceding limit on attainable closed-loop bandwidth is ac-
ceptable.

We expect the closed-loop system to be very well be-
haved, and this is confirmed by the digital computer sim-
ulation shown in Fig. 4. In the following subsection, we
present a derivation of a class of control schemes to which
the above example belongs.

B. A Basic Approach to a Lyapunov-Based Control
Design

In this section, we show how to derive a class of control
laws for a switching converter model of the form (6), to
which the example (11) belongs. Note that the open-loop
stability of the system (6) is crucial for this approach, and
hence we restrict attention to switching converters that
satisfy the conditions guaranteeing stability under nomi-
nal duty ratio operation. A basic first step in this ap-
proach, as illustrated earlier, is the specification of a Lya-
punov function for open-loop operation. The model (6) is
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Fig. 4. Digital simulation of up-down converter under nonlinear feedback
control scheme.

linear and time-invariant in the case of open-loop opera-
tion under a constant nominal duty ratio, i.e., d = 0. Be-
cause the open-loop model is known a priori to be stable,
it is generally possible to determine a famiily of suitable
quadratic Lyapunov functions. In fact, in the case where
the matrix A is asymptotically stable, it is possible to pa-
rametrize the family of such quadratic functions with the
Lyapunov equation

A*Q, + QA = —P\ P} (15)

where {P{, A} is an observable pair. The existence of a
positive definite, symmetric solution @, to (15) is guar-
anteed by the stability of the matrix 4 and the observa-
bility of the pair {P}, A} [8]. See [23] for a method of
selecting a suitable matrix Q, for the case where the ma-
trix A has simple eigenvalues on the jw axis.

Having determined the form of a suitable matrix Q,, it
is straightforward to specify a globally stabilizing control
law for the model (6) of the form (11), but based on the
Lyapunov function V(x) = 1x*Q, x, as follows:

—ay, —d, < —ay<1-4d,
d= _dn’ —ay < _dn (16)
1 -d, —ay > 1 —d,

where y = (Bx + b)*Q,x. One particular choice for @,
is Q where V(x) = 1 x* Ox is the energy in the increment,
and it turns out that this choice leads to certain nice fea-
tures, which are elaborated below.

C. Advantages of the Use of the Energy in the
Increment for Control Purposes

As noted in Section III-B, there is typically some free-
dom in the choice of the Lyapunov function that can be
used in the control designs described there. Here, we out-
line three advantages obtained by using the energy in the
increment as the Lyapunov function in these control
schemes. One advantage of the choice of the energy in
the increment as the Lyapunov function for control design
purpose arises in the computation of the variable y = (Bx

+ b)* Qx that is used in these control schemes. In partic-
ular, one can always measure the vector Q(Bx + b). To
see this, consider the modification of (6) where we mul-
tiply this equation on the left by the matrix Q, giving

Ox' = QAx + Q(Bx + b) d.

Now the vector on the left-hand side of (17) is composed
of the time derivatives of the inductor fluxes and the time
derivatives of the capacitor charges. The elements of this
vector are necessarily inductor voltages and capacitor cur-
rents. The vector Q(Bx + b) is the amount by which this
vector changes when the duty ratio steps from —d, to 1
— d,, or equivalently, the amount this vector changes
when the switch configuration is changed. In general, it
is possible and feasible to determine the vector Q(Bx +
b) during each cycle. To do this, for each inductor branch
one would measure the voltage across the branch in each
of the two switch configurations and then form the differ-
ence of the two measurements. This difference constitutes
the element of Q(Bx + b) corresponding to the particular
inductor port. In the case of a capacitor, one would mea-
sure the current flowing into the capacitor in each of the
two switch configurations and form the difference of the
two measured currents. This difference constitutes the
element of Q(Bx + b) corresponding to the particular ca-
pacitor. By performing the described measurement pro-
cess, it is possible to obtain an accurate measurement of
the vector Q(Bx + b). Consequently, one can compute
the variable y = x*Q(Bx + b) by forming the inner prod-
uct of x and Q(Bx + b). The only parametric dependence
is therefore on the nominal state values required to deter-
mine x, the deviation in the states from their nominal val-
ues.

In certain cases, it is possible to further simplify the
measurement of O(Bx + b). For these cases, it is possible
to directly measure the vector Q(Bx + b) by measuring
certain branch voltages and branch currents in the circuit
at one time instant. One such example is the up-down
converter of Fig. 2. For this example, the vector

Vi —v
Q(Bx+b)=[ ) }

an

(18)

1

and these quantities can be directly measured on the con-
verter circuit. Necessary and sufficient conditions for such
a simple measurement of the vector Q(Bx + b) are given
in [23].

A second potential advantage of the choice @) = Qin
(16) is that it is possible to use a nearly linear version of
this control algorithm by replacing y = (Bx + b)*Qx in
(16) with yy;, = b* Ox, and still maintain global stability.
Of course, the saturation constraints are still in effect. To
see that global stability is maintained, consider the fol-
lowing Lyapunov analysis with V(x) = %x* Ox:

d 1
5 V0 = 3 x%[( + dB*Q

+ Q(A + dB)}x + (b*Qx) d. 19
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Now the first term on the right-hand side of (19) is always
nonpositive. This follows from the fact that the energy in
the increment takes the form 3 x* Ox for any nominal duty
ratio, with the fixed matrix Q. The choice of the control
in (16) (using y;;,) forces the second term on the right-
hand side of (19) to be nonpositive. Global stability re-
sults from the nonpositivity of the right-hand side of (19).
Hence, the choice of @, = Q in (16) permits the use of a
feedback control that requires only the computation of the
linear variable yy;, .

A third advantage of the use of the energy in the incre-
ment as a Lyapunov function for control design is that a
control law of the form (16) with Q, = Q can result in
global stability of a more complex power system in which
the original converter is embedded. In particular, if the
converter is interconnected only with (relatively) passive
circuit elements, the resulting interconnected system is al-
ways guaranteed to be stable. For example. if an addi-
tional section of output filter is added to the up-down con-
verter of Fig. 2, as shown in Fig. 5, the control law
designed for the original converter stabilizes the modified
circuit.

D. Adaptive Control Method to Handle Uncertain
Nominal State Values

This section considers a control design of the form (11)
for the model (6), but in the case where the nominal state
vector is unknown. The effect of this uncertainty is to re-
place the variable y by

y = (Bx + b)y*Q(x — 6x,)

where 6x, is the uncertainty in the nominal operating
point, that is,

6)(,, =X, — X,

(20)

where %, is an estimate of the nominal operating point.

To implement the self-tuning scheme, we include as
part of an augmented state vector, an estimate £, (f) of the
constant nominal value of the state vector for the original
plant. We can equivalently represent this estimate by its
error, i.e., 6x,(1) = £,(f) — x,,. The update law for dx, (7)
is selected by considering the Lyapunov function

V= 1x%Qx + 5 (6x,)*K(6x,) Q1)

where K is a symmetric positive definite matrix and Q is
as previously specified. In particular, it is possible to sta-
bilize the system by choosing the update law to be
d
5 ) = —K'Q(Bx + b) (22)
in conjunction with the control law (11). Note that y can

now be determined without any uncertainty arising from
the unknown nominal state values because

x = 6xn = (xt - xn) - (f,7 - X”) =X T Xy

where x, is the actual full state value (which can be mea-
sured), whereas £, is stored in the controller. Note that it

Fig. 5. Up-down converter with additional filter sections.

is generally possible to obtain an accurate measure of
Q(Bx + b) as discussed in Section III.C.

Example: Estimation of Nominal Inductor Current in
Simple Up-Down Converter: In this example, we apply
the adaptive control scheme to the second order up-down
converter whose parameters are given in Section IIL.A.
We now assume, however, that the load is unknown but
constant in the steady state. Consequently, the nominal
inductor current is also unknown. This is the parameter
that our self-tuning mechanism will estimate. In this ex-
ample, it is assumed that the input voltage V, is known
(i.e., measured), the nominal output voltage v, is defined
by the regulation problem, and the nominal duty ratio 4,
is known. (The nominal duty ratio can usually be deter-
mined from V, and v,.) We work with the augmented
model

i’ 0 (1 —d)/L 0] [i
v’ =1 -(1-4d,/C 0 0|l v
(8i,)' 0 0 0] Li,)
V. — v)/L
+ i,/C d
k', — v)
y=W—v){i — @i} + iv. (23)

Note that in this model, the quantities without subscripts
are deviations from nominal, the quantities with subscript
t are total variables that can be measured, and the quan-
tities with subscript n are nominal variables. We only at-
tempt to estimate the nominal inductor current as the other
nominal state variable (the capacitor voltage) is known.
The output y of this model can be determined exactly since
i — (8i,) is precisely i, — i, i.e., the difference between
the actual inductor current and the present estimate of the
nominal value of this current. The control design can be
completed by specifying k > 0 and a feedback gain a.
These parameters may be selected by considering the
small-signal behavior. For example, with a nominal load
current of 2 A, the eigenvalues of the small-signal linear-
ized model can be placed at —7.713 + j12.9 and —11.36
krad /s by selecting ¥ = 2778 and the unsaturated gain «
= 0.004. Of course, in practice, the design would have
to be made without accurate knowledge of the nominal
load current. Other parameter choices can result in still
faster small-signal behavior. A numerical simulation of a
start-up transient using these parameters is shown in Fig.
6. Note that the initial condition for the estimate of the
nominal inductor was taken as zero.
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Fig. 6. Start-up transient in second-order converter using adaptive control
scheme.

More complex examples that require estimation of more
than one nominal state are considered in [23].

IV. SUMMARIZING REMARKS

The Lyapunov-based control described in this paper is
evidently a promising approach to the control of switched-
mode power converters. The method can be extended to
converters that handle time-varying input-output wave-
forms, see the discussion in [23]. In applications in dis-
tributed power supply environments, this type of control
may prove very useful as it may become necessary to sta-
bilize arbitrary interconnections of converters and loads.
The method also lends itself to the design of state observ-
ers as outlined in [26].

A. Passivity, Incremental Passivity, and Relative
Passivity

In order to state the following definitions in a relatively
general way, we assume the input-output vector pair of
an n-port to be a hybrid pair. That is, the input u(¢) and
output y(#) of an n-port are n-component vectors whose
elements represent port voltages or currents. The com-
ponents of y(r) are complementary to those of u(¢), and
oriented such that u(z)* y(¢) is the instantaneous power en-
tering the network at its ports. In the following, the net-
works of interest are assumed to be time invariant unless
otherwise noted.

Passivity: The definition of passivity presented in
Wyatt er al. [17], Wyatt [19], and in Hasler and Neirynck
[16] are adopted here.

Definition A.1 (Available Energy): Given an n-port N,
let the available energy E, , in state x be the maximum
energy that can be extracted from N when its initial state
is x, with the convention that E, , = + oo if the available
energy is unbounded. That is,

T

Eqx = sup SO —u(R)*y() dt. 24

Definition A.2 (Passivity): N is passive if E, , is finite
for each initial state x. Note that this definition of passiv-
ity is directly tied to a state-space realization for the
n-port in question. This is not objectionable for our pur-

poses as we aim to draw conclusions for switching con-
verters for which state models are readily obtained. In the
context of a switching converter, the concept of passivity
is of use in viewing a controlled converter as an intercon-
nection of various n-ports.

Incremental Passivity: The definition given here fol-
lows the system theoretic framework of Desoer and
Vidyasagar [20].

Definition A.3 (Energy in the Increment): Given an
n-port N with initial state x, let (u; (), y1(®) and (u, (1),
y,()) be any two admissible input-output trajectories on
[0, T] with T finite. The energy in the increment between
the two trajectories is defined by

T

W(T) = So (uy — uwp)*(y) — ) dr. (25)

Definition A.4 (Incremental Passivity): An n-port N
with initial state x is incrementally passive at state x if
W,.(T), the energy in the increment defined in (25), is
nonnegative for every pair of admissible trajectories on
[0, T] with T finite. If the network is incrementally pas-
sive at all statés x in the state space, it is said to be incre-
mentally passive. The n-port is strictly incrementally pas-
sive at state x if W, (T) > 0 whenever the two trajectories
are distinct. The network is strictly incrementally passive
if it is strictly incrementally passive at every state in the
state-space. Note that this definition is closely tied to the
definition of passivity. A passive network can supply only
finite energy whie an incrementally passive network can
absorb only nonnegative energy in the increment between
two trajetories (W, in (25)).

Relative Passivity: Incremental passivity proves to be
too strong a condition in the case of certain nonlinear n
ports. In fact, many nonlinear networks that are not in-
crementally passive exhibit a closely related property that
we term relative passivity. Another closely related notion,
local passivity for a capacitor (or inductor), has been in-
troduced in {16], [25]. However, our definition of relative
passivity is potentially applicable to any type of network.
To define a relatively passive network, we examine the
energy in the increment with respect to a constant nominal
operating point.

Definition A.5 (Relative Passivity): Given an n-port N
with equilibrium state x, and nominal output y, corre-
sponding to the constant input u,, consider the admissible
trajectory (u(z), y()) on [0, T that is obtained with initial
state x(0) = x,. The n-port is relatively passive at x, if

.
W, () = SO [u() — u,1*[ (1) = y,]dt = 0 (26)

for any finite 7. The n-port is relatively passive if (26)
holds for any nominal operating point. N is strictly rela-
tively passive at x, if the inequality in (26) is strict when-
ever x(T) # x,. N is strictly relatively passive if itis
strictly relatively passive for any constant nominal state.
In the case of lossless elements for which W, (T) is a
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function of only x, and x(T), W, (T) can be useful as a
Lyapunov function.
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